Identifying disentangled climate prototypes of forest mortality with generative deep learning Mohit Anand, Lilly-belle Sweet, Gustau Camps-Valls, Jakob Zscheischler

30th November 2022

Introduction

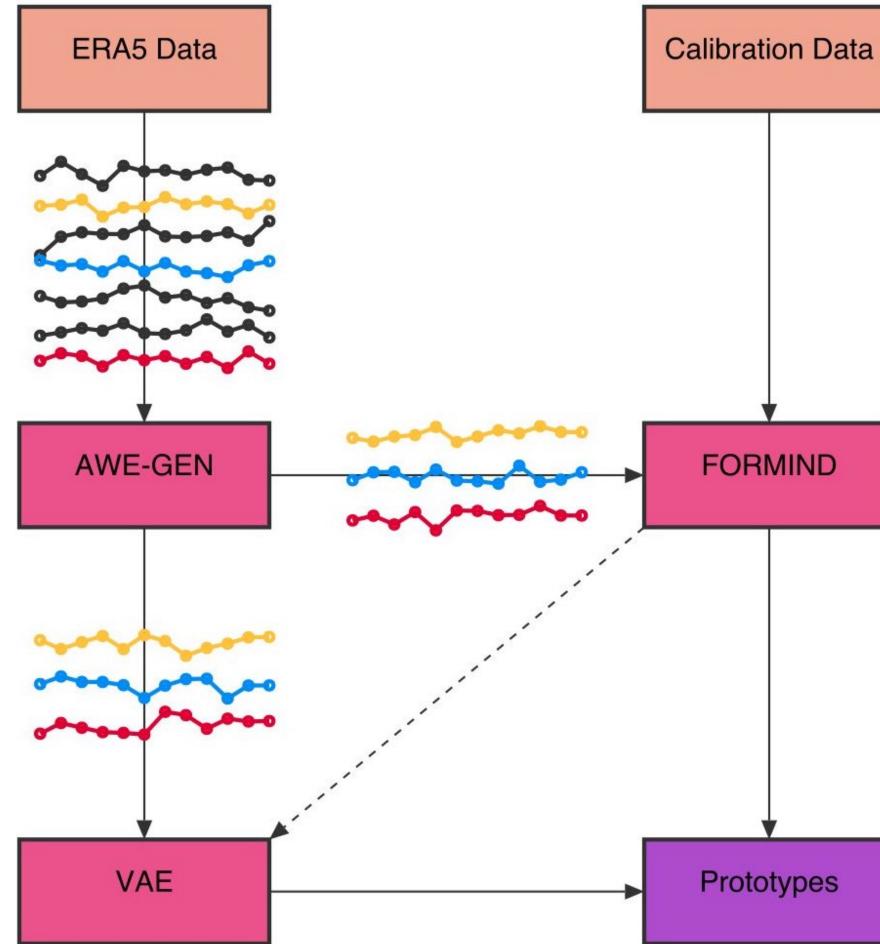
- Forest are global carbon sink
- Climate change leads to higher forest mortality
- Forest mortality is complex
 - Multiple drivers
 - Long temporal scale
 - State dependency

Introduction
Why?

- Understanding the climatic drivers of forest mortality
 - How forest mortality will change with changing climate?
 - Important for forest management and policy makers

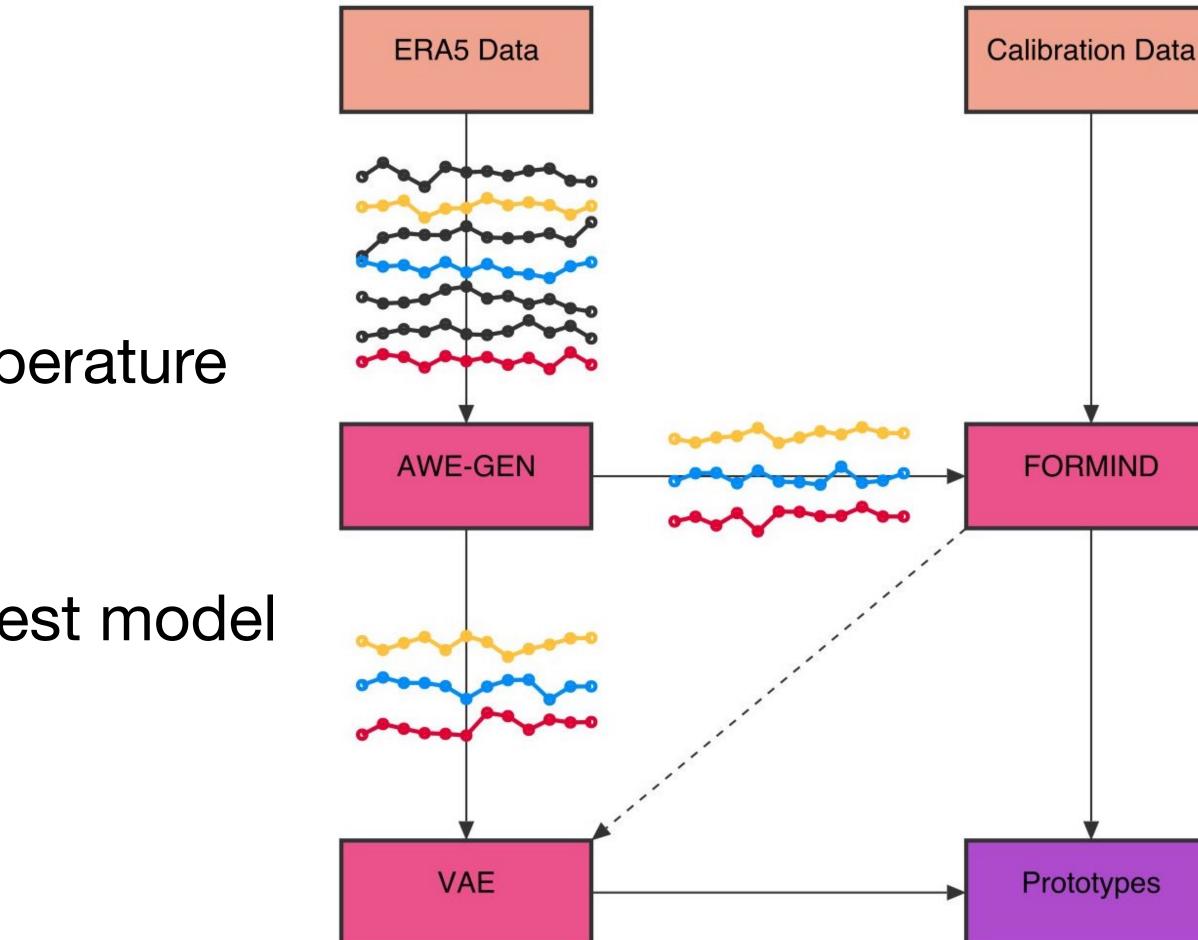
Methodology Flow

- ERA5 reanalysis dataset
- Variables
 - Precipitation
 - Cloud cover
 - Shortwave-radiation
 - Relative humidity
 - Wind speed
 - Atmospheric pressure
- 1979-2019



Methodology Flow

- AWE-GEN
 - Stochastic weather generator
 - Radiation, Precipitation and Temperature
- FORMIND
 - Process and individual based forest model
- Variational Autoencoders (VAE)
 - Generative deep learning model

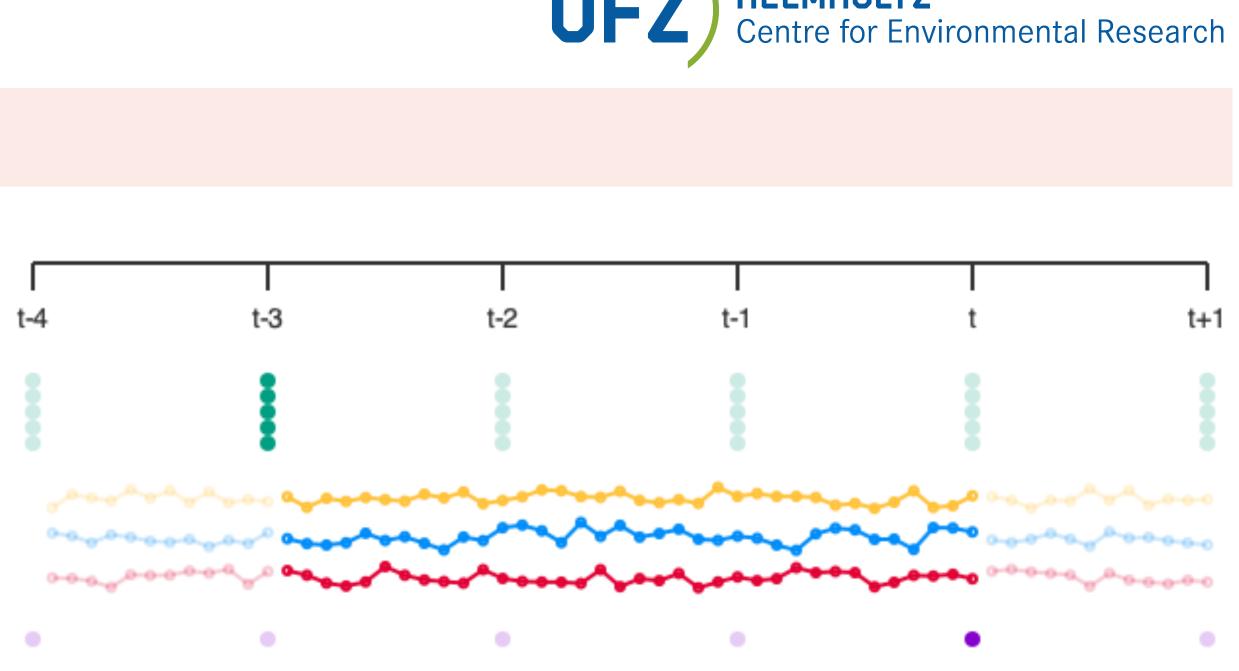


Methodology Data Preparation

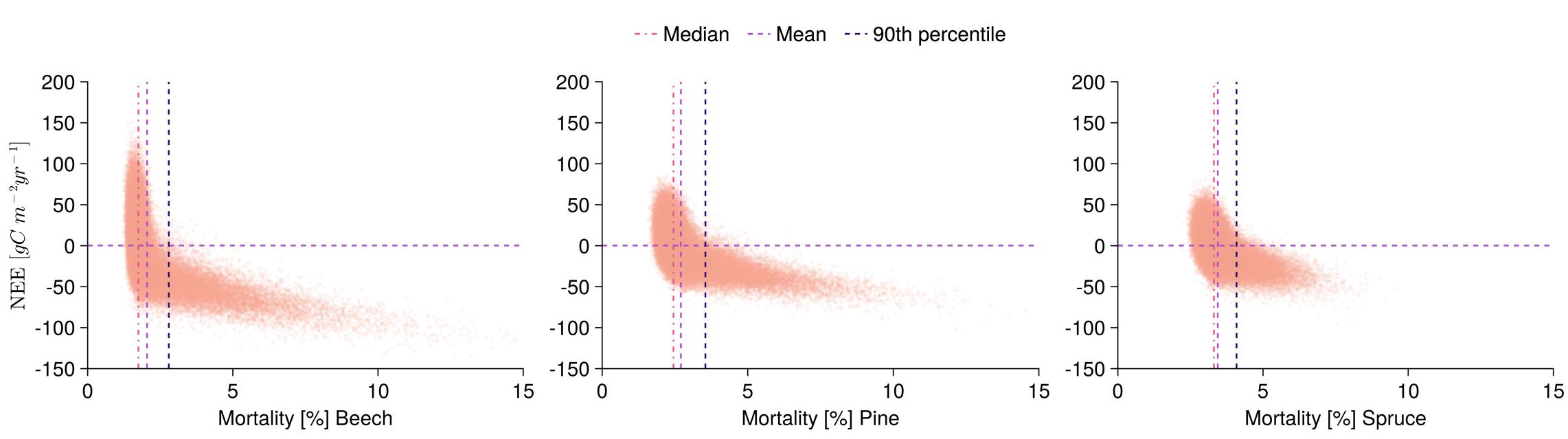
- FORMIND Calibration
 - Hainich Beech Forest, Germany
 - 51.08 degrees N, 10.51 degrees E
- 3 separate simulations
 - Beech, Pine and Spruce
 - Burn in period 2000 years
 - 160,000 years of simulations
 - Area 200 ha

Methodology **Data Preparation**

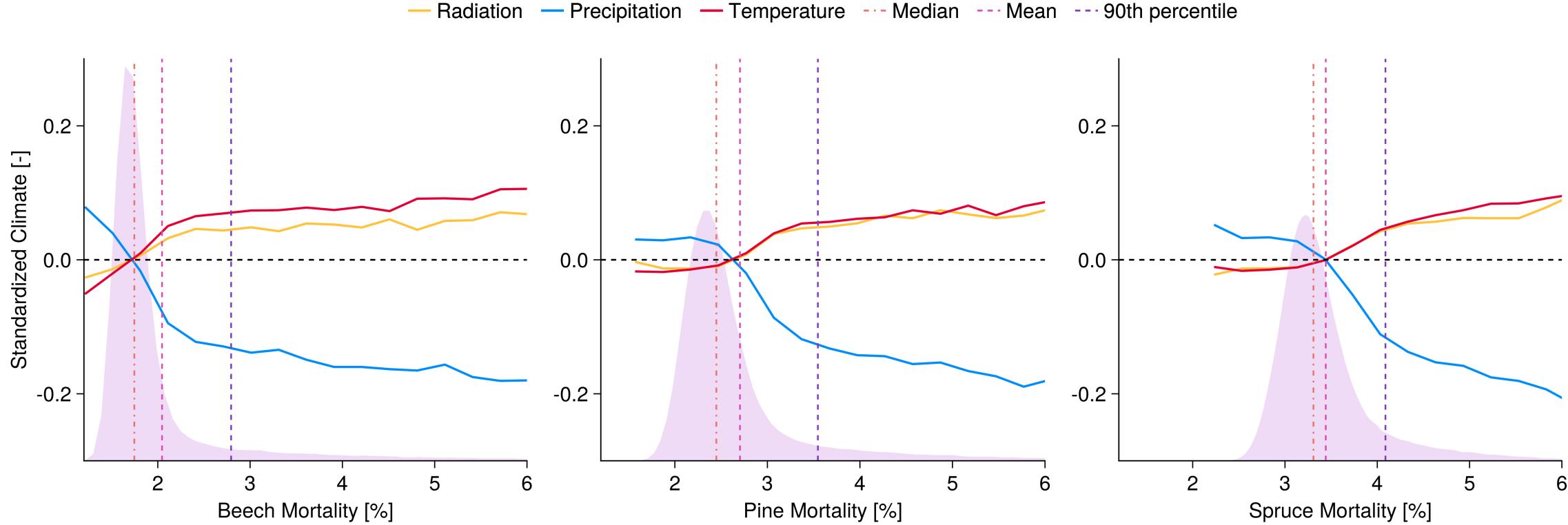
- State variables (x_s)
 - Yearly values $year_{t-3}$
- Dynamic variables (x_d)
 - Monthly values $year_{t-2}$, $year_{t-1}$, and $year_t$
- Biomass Mortality Rate (MBR) (y)
 - Yearly Value year,
 - Binary (90th percentile)



FORMIND Simulation Net Ecosystem Exchange vs Mortality

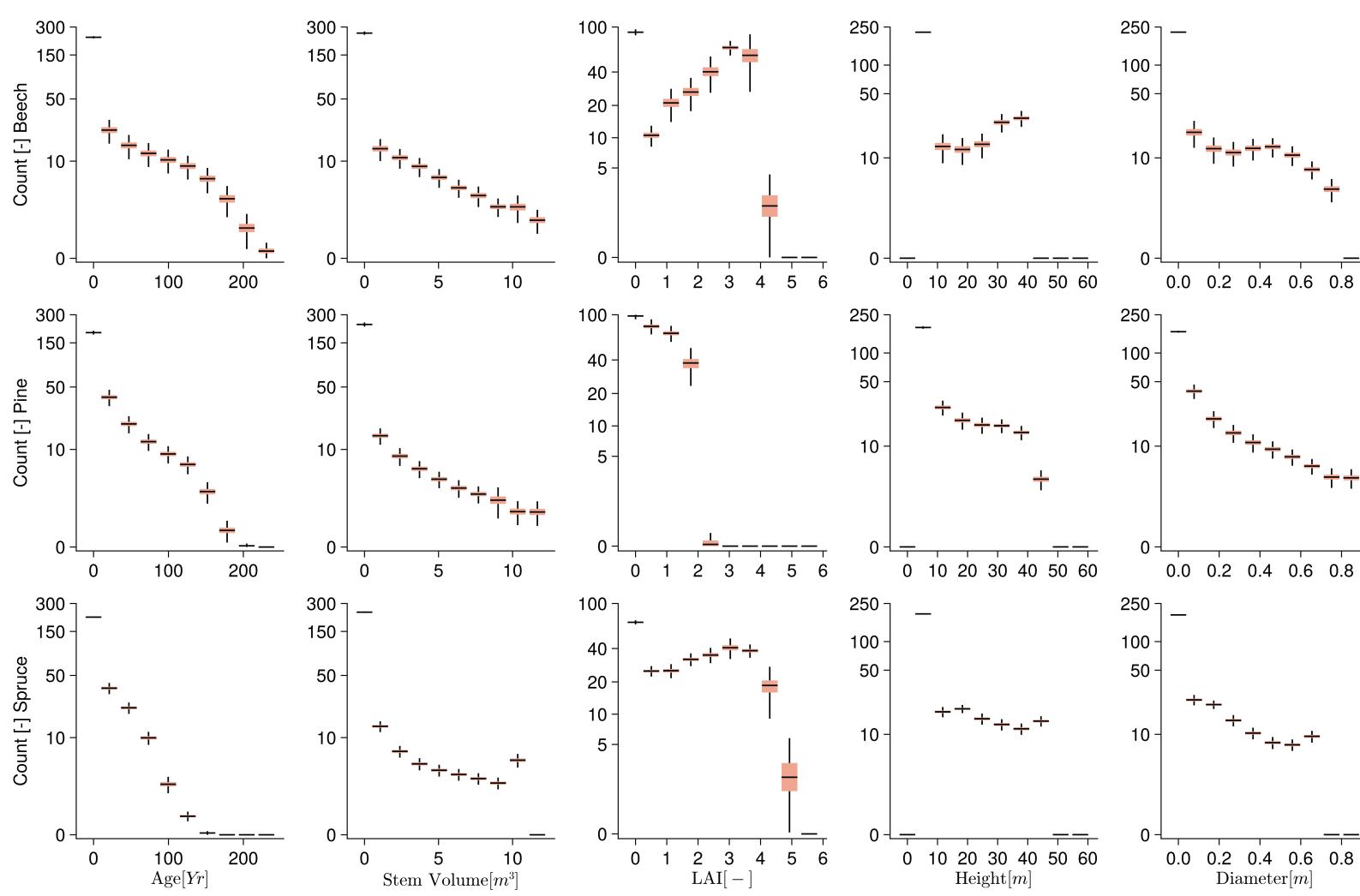


FORMIND Simulation Forest Mortality



FORMIND Simulation State Variables

- State variables are PFT dependent
- LAI has a very different pattern

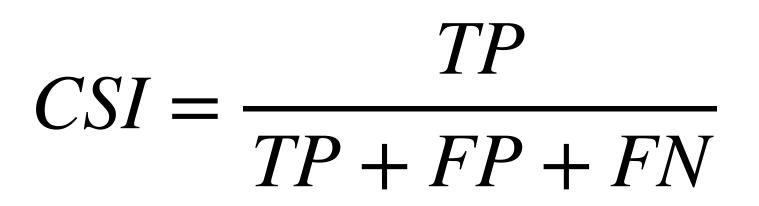


Extreme Mortality Logistic Regression

Metrics	CSI	f
Beech Logistic Regression with x_d	0.43	
Beech Logistic Regression with x_d and x_s	0.53	
Pine Logistic Regression with x_d	0.46	
Pine Logistic Regression with x_d and x_s	0.60	
Spruce Logistic Regression with x_d	0.46	
Spruce Logistic Regression with x_d and x_s	0.59	

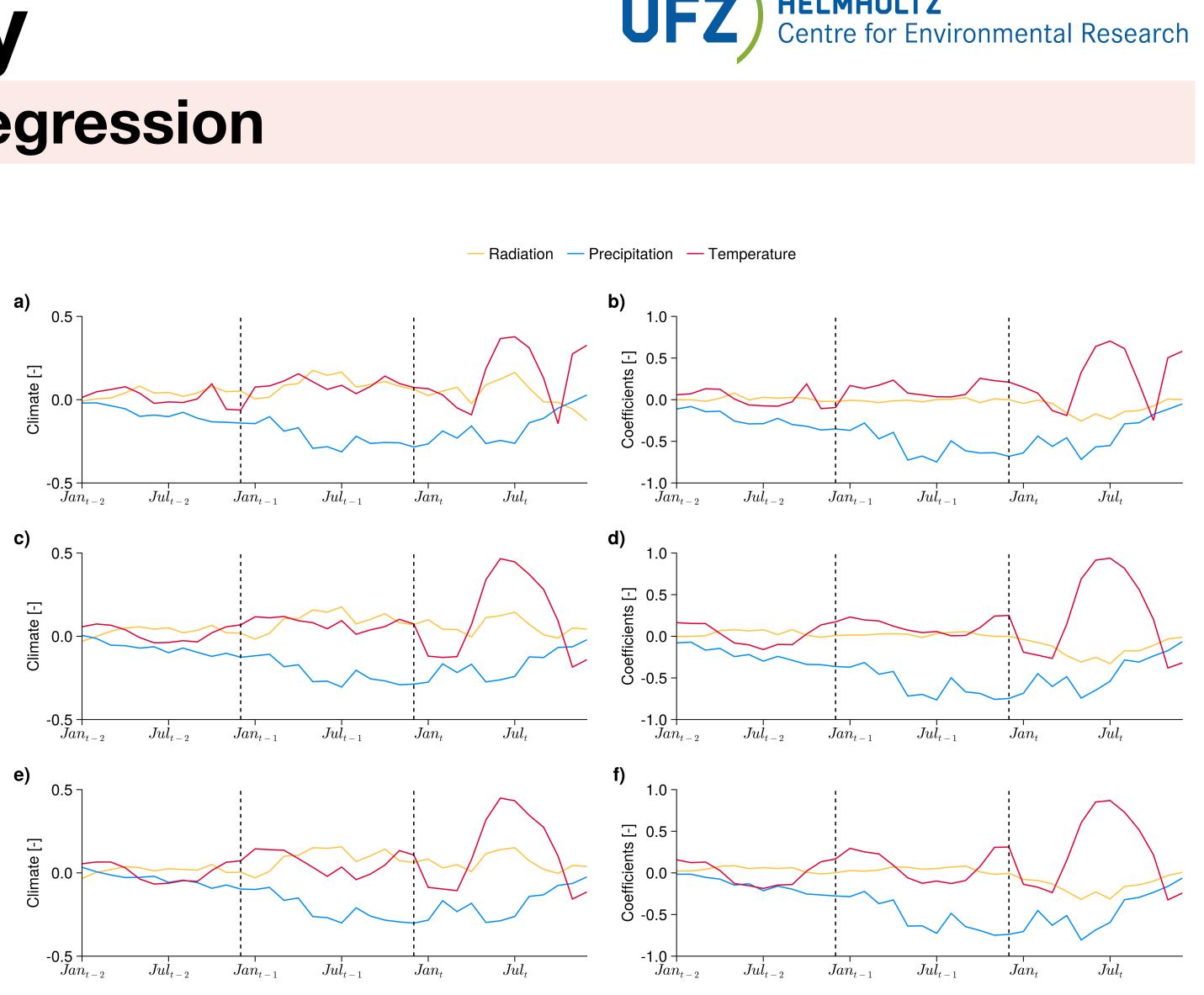
- Predictability
 - Spruce == Pine >> Beech
 - Static variables help

f1-score	Average Precision				
0.60	0.65	_	0	1	
0.69	0.77	0	TN	FP	_
0.64	0.70	U	IIN		Actual
0.75	0.85				Act
0.63	0.69	1	FN	TP	
0.74	0.84	-			
		-	Predicted		



Extreme Mortality Composites & Logistic Regression

- Extreme mortality > 90th percentile
- Drier years with higher temperature and solar radiation
- Pine and Spruce has similar behaviour



Composites are nice We want to know more!

- mechanisms for extreme forest mortality
- Pathways leading to high forest mortality

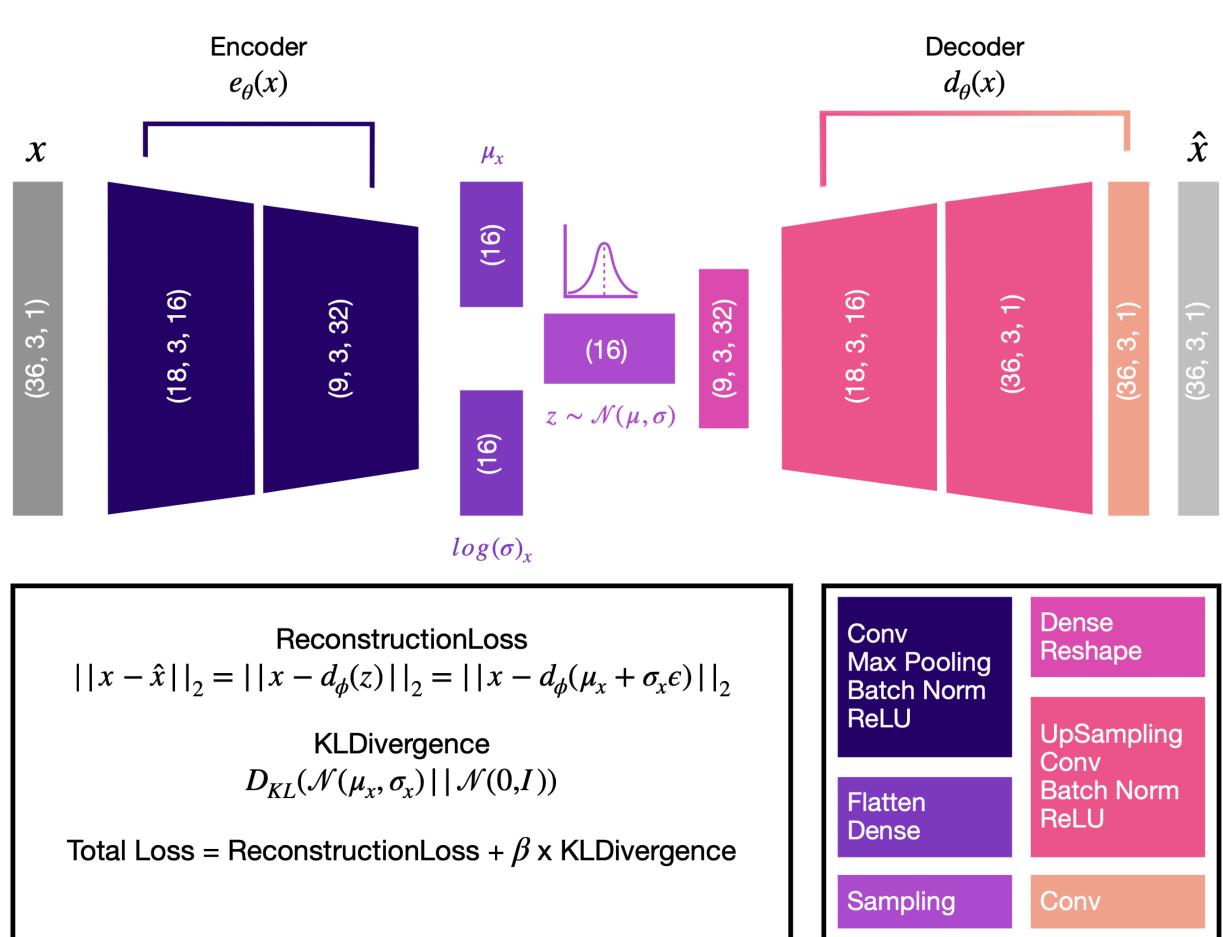
Composite and Logistic Regression show one dominant (superimposed)

VAE **Generative Modelling Approach**

- VAE has two parts
 - Encoder
 - Decoder
- Input space is reduced to latent space (Encoder)
- Reconstruction is done again from the latent space (Decoder)
- Latent dimensions are independent and normal (approximately)

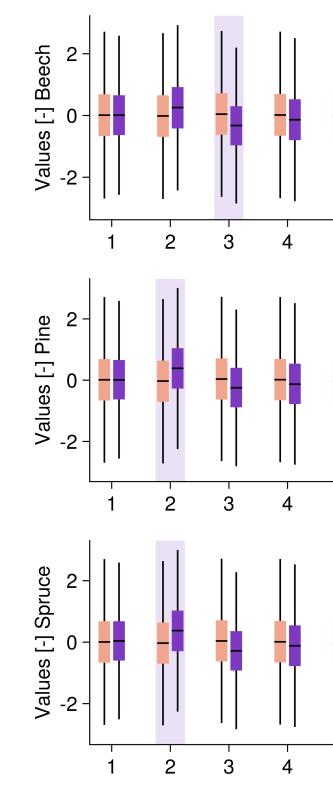
VAE Architecture

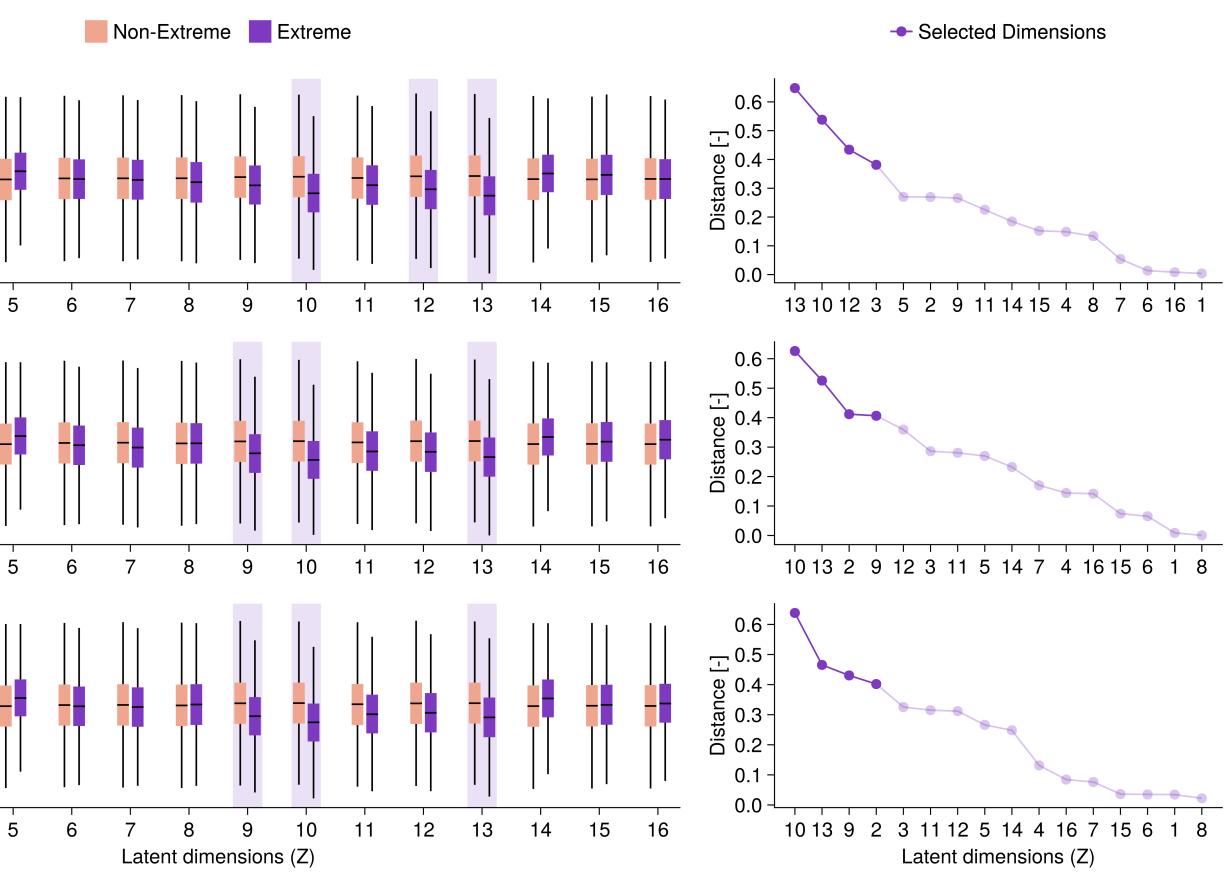
- Input
 - 3 years (monthly), radiation, temperature and precipitation
 - 16 latent dimensions
 - Loss has 2 components



ResultsLatent Dimensions

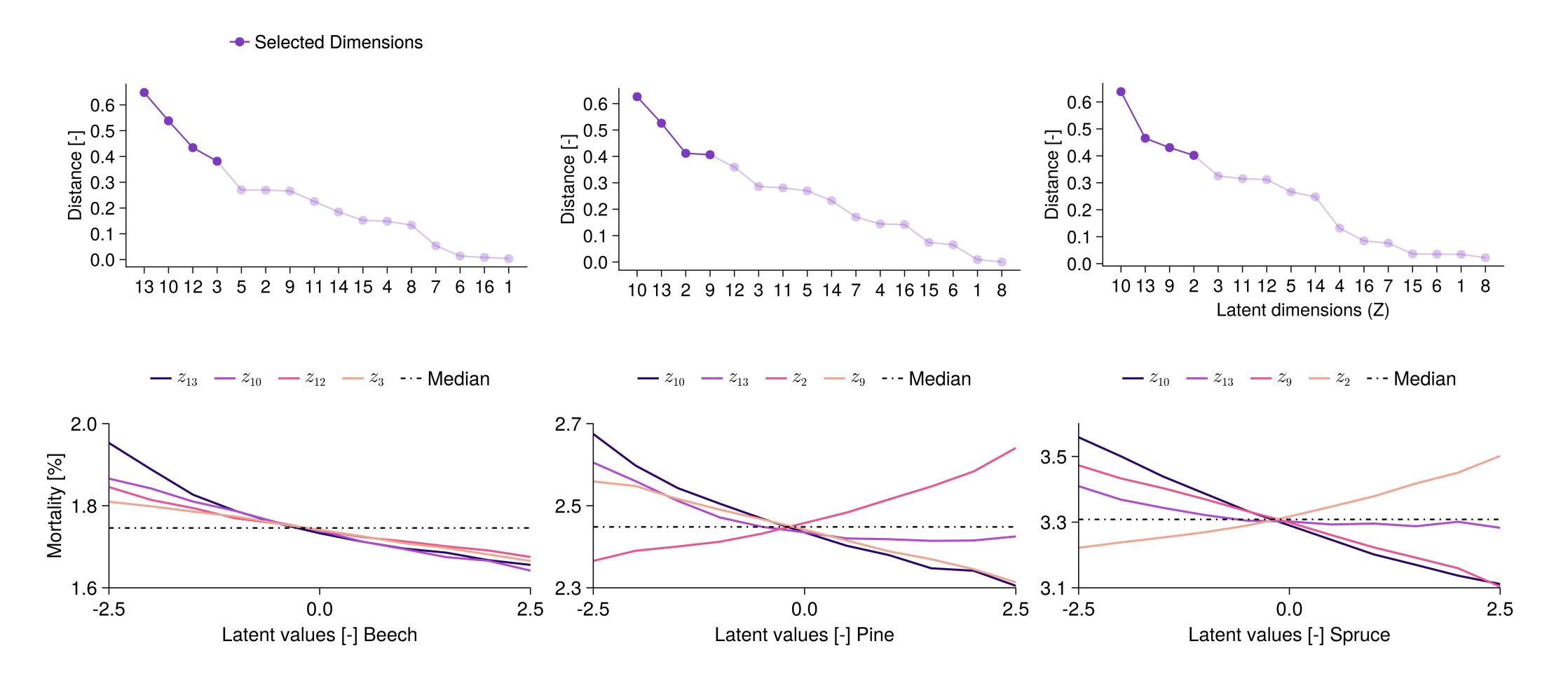
- Extreme vs Non-Extreme latent values
- Difference between latent values
- Pine and Spruce have similar behaviour



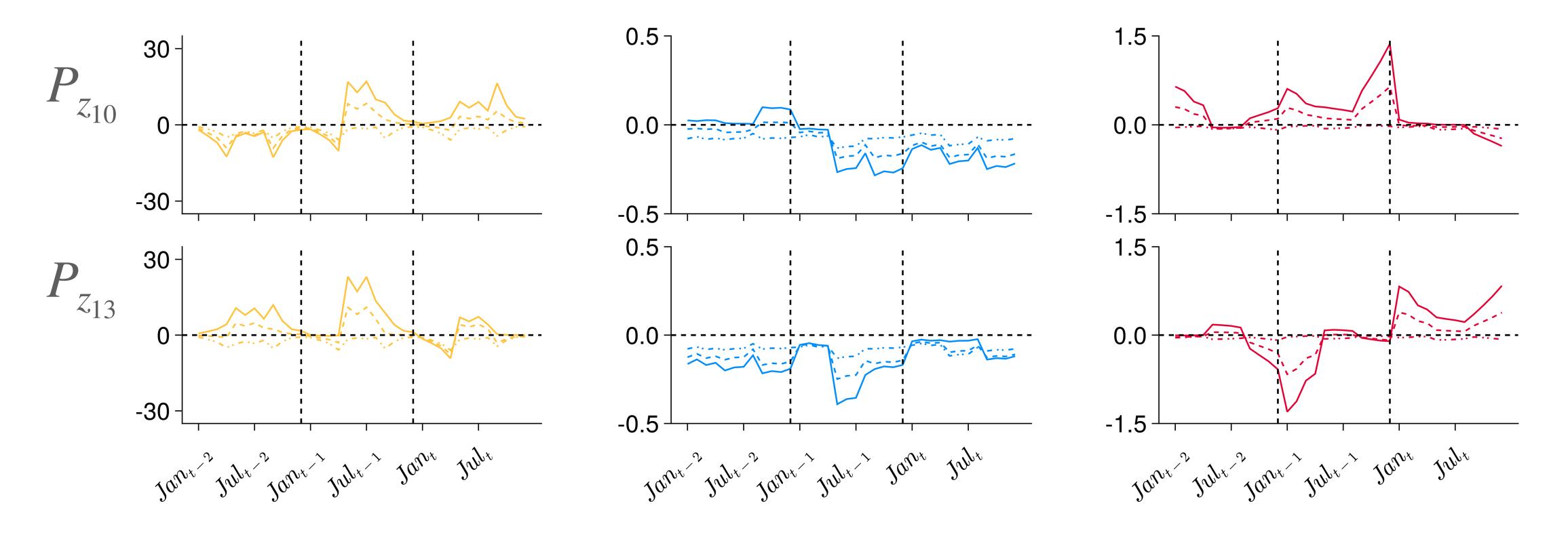


2

Results Latent dimensions vs Mortality

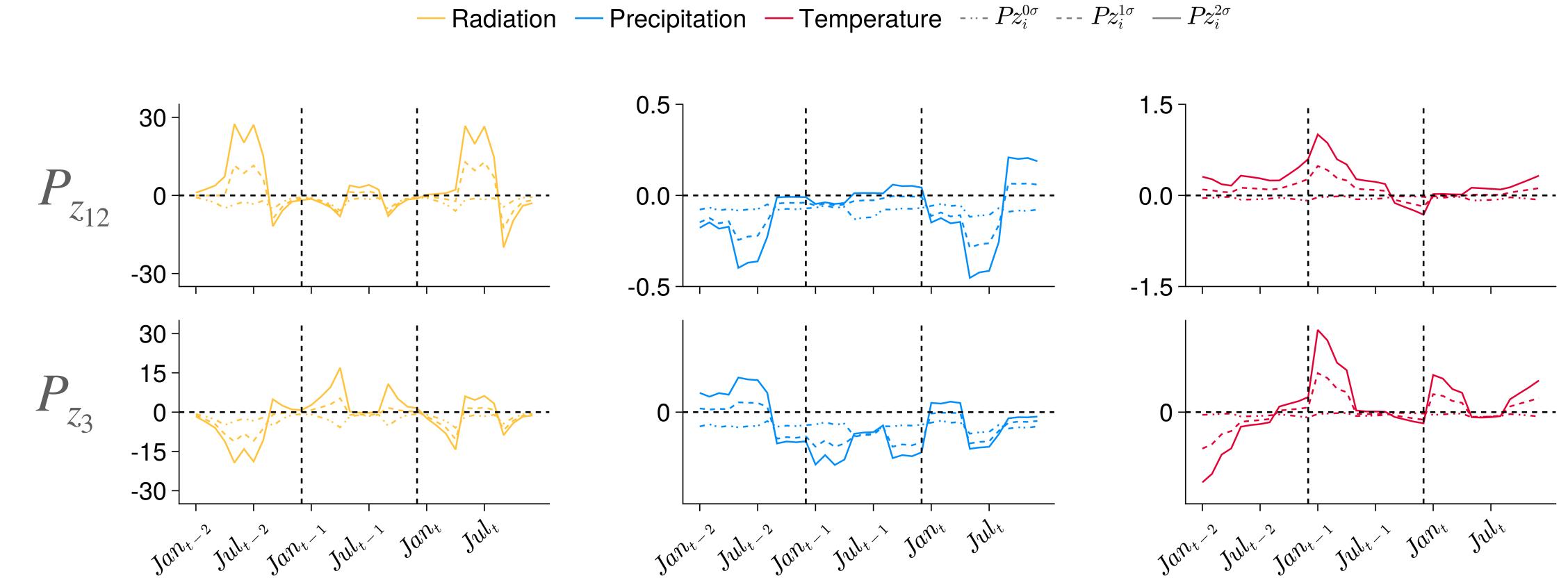


Results All

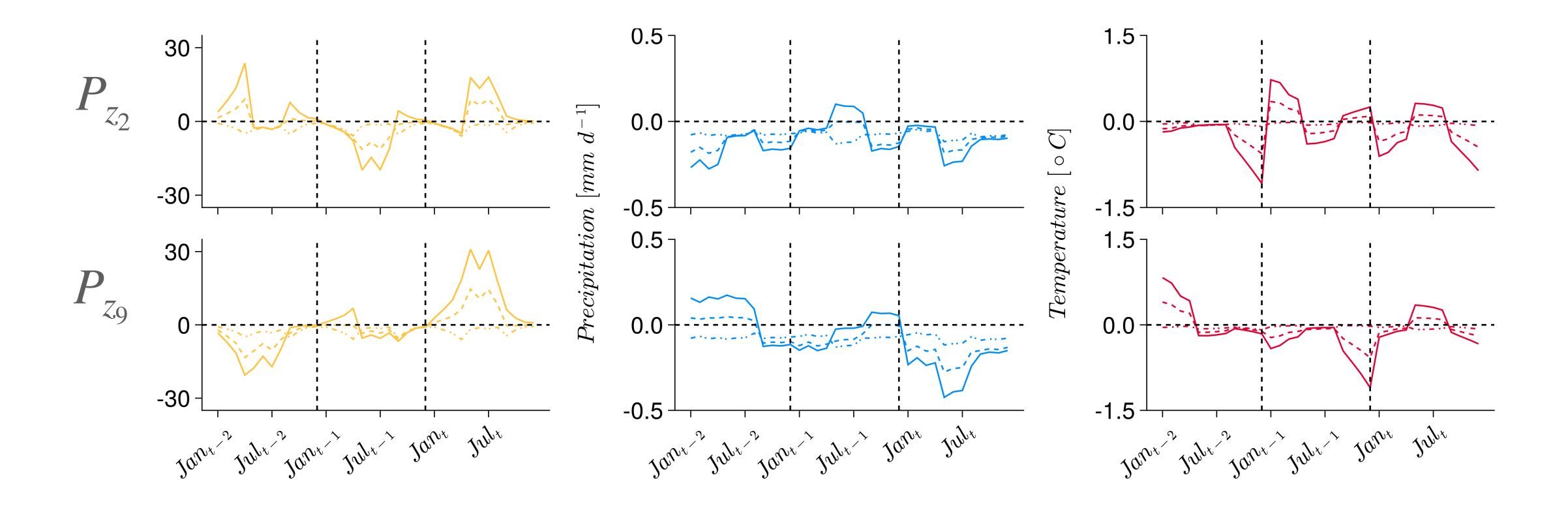


Radiation — Precipitation — Temperature $- Pz_i^{0\sigma} - Pz_i^{1\sigma} - Pz_i^{2\sigma}$

Results Beech

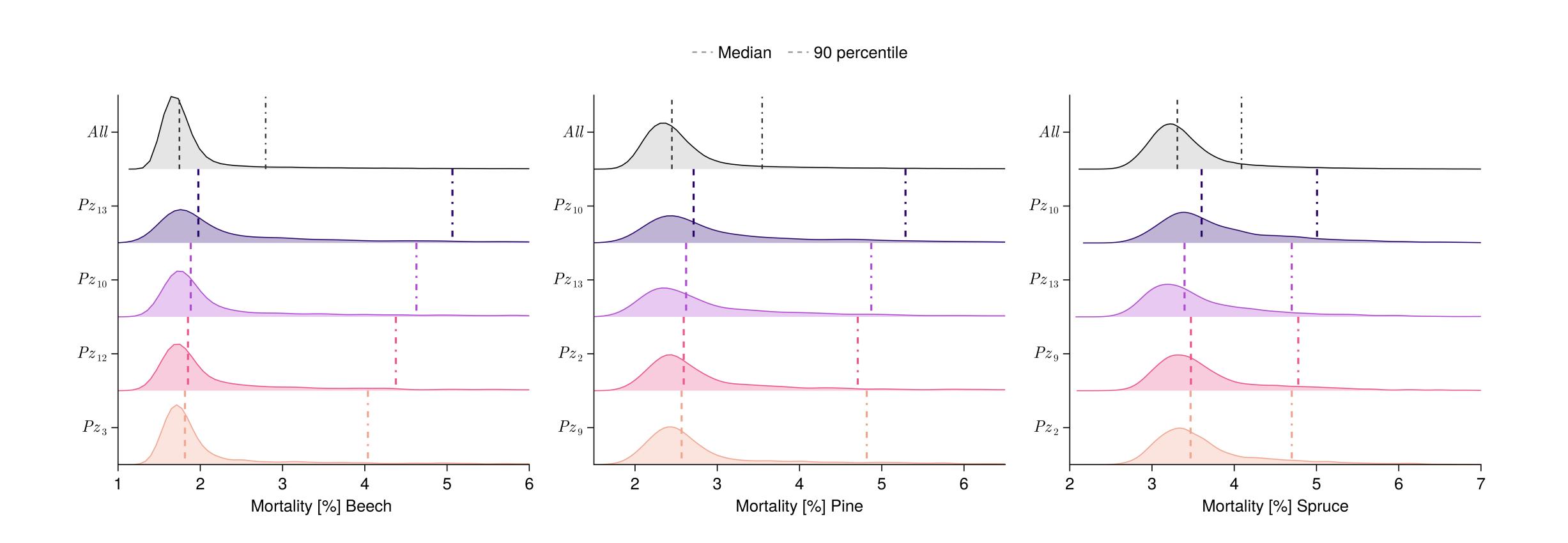


Results **Pine and Spruce**



Radiation — Precipitation — Temperature $- Pz_i^{0\sigma} - Pz_i^{1\sigma} - Pz_i^{2\sigma}$

Results Mortality density



Conclusion

- Forest mortality is a complex phenomenon
- Weather far in past matters for mortality
- State variables matter
- Composite analysis/Logistic regression identifies the dominant average
- VAEs identify climate prototypes of forest mortality
- Identified prototypes are associated with higher forest mortality (on average)

