

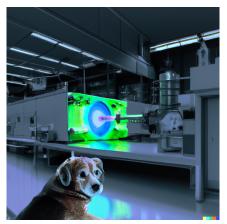
Simon Welker*,[†], Henry N. Chapman[†], Timo Gerkmann*

Blind Drifting: Diffusion models with a linear SDE drift term for blind image restoration tasks

The Symbiosis of Deep Learning and Differential Equations II *Signal Processing, Department of Informatics, University of Hamburg [†]Coherent Imaging Division, Center for Free-Electron Lasers (CFEL), DESY December 9, 2022

Score-based Generative Models: DALL·E 2 DASHH.

"Elbphilharmonie, Hamburg, by Vincent van Gogh"



"Dog who has no idea what he's doing at an international Free Electron Laser research facility"

Score-based Generative Models (SGMs)

Score-based generative models (SGMs) consist of two processes:^[1,2]

- Forward process, gradually adds noise to the input
- Reverse process, generates data by gradual denoising

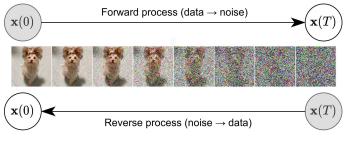


Figure: Graphic by Song et al. [2]

Blind Drifting: Diffusion models with a linear SDE drift term for blind image restoration tasks

J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, "Deep unsupervised learning using nonequilibrium thermodynamics," in International Conference on Machine Learning, 2015, pp. 2256–2265.

^[2] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, "Score-based generative modeling through stochastic differential equations," Int. Conf. on Learning Representations (ICLR), 2021.

SGMs via Stochastic Differential Equations DASHH.

Song et al.^[2]: Model forward process as a stochastic differential equation (SDE)

$$d\mathbf{x} = \underbrace{\mathbf{f}(\mathbf{x}, t)}_{\text{Drift}} dt + \underbrace{g(\mathbf{x}, t)}_{\text{Diffusion}} d\mathbf{w}, \qquad t \in [0, 1]$$
(1)

which has an associated Reverse SDE:

$$d\mathbf{x} = \begin{bmatrix} -\mathbf{f}(\mathbf{x}, t) + g(\mathbf{x}, t)^2 \underbrace{\nabla_{\mathbf{x}} \log p(\mathbf{x})}_{\text{Score of } p(\mathbf{x})} \end{bmatrix} dt + g(\mathbf{x}, t) d\overline{\mathbf{w}}$$
(2)

• Learn score network $s_{\theta}(\mathbf{x}, t) \approx score \nabla_{\mathbf{x}} \log p_t(\mathbf{x})$, plug s_{θ} into (2) to create a **Reverse Neural SDE**

• As initial value: t = 1, $x_{t=1} = pure$ Gaussian noise

→ Numerically solving this initial value problem generates new samples!

^[2] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, "Score-based generative modeling through stochastic differential equations," Int. Conf. on Learning Representations (ICLR), 2021.

Score-based generative models (SGMs) for inverse problems?

- $\blacksquare \ \ \, \mbox{Motivation: SGMs exhibit strong modeling of data distributions} \\ \ \ \, \rightarrow \mbox{ make inverse problems easier}$
- Some inverse problems have been tackled^[3,4], but approaches typically assume **known and/or linear** forward operators *T*
- No such luxuries for blind inverse problems:
 - Blind deconvolution
 - Non-uniform deblurring
 - Artifact removal
 - Background removal
 - …

^[3] B. Kawar, M. Elad, S. Ermon, and J. Song, "Denoising diffusion restoration models," in ICLR Workshop on Deep Generative Models for Highly Structured Data, 2022. [Online]. Available: https://openreview.net/forum?id=BExXihVOvWq.

^[4] H. Chung, J. Kim, M. T. Mccann, M. L. Klasky, and J. C. Ye, "Diffusion posterior sampling for general noisy inverse problems," arXiv preprint arXiv:2209.14687, 2022.

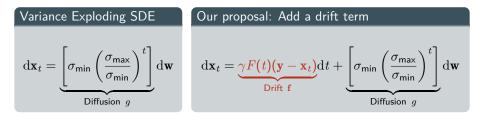
• Many SGMs use something like the Variance Exploding SDE:

$$\mathbf{f}(\mathbf{x},t) = 0, \qquad g(t) = \left[\sigma_{\min}\left(\frac{\sigma_{\max}}{\sigma_{\min}}\right)^t\right]$$
 (3)

- Much exploration of the diffusion term g in the literature
- \blacksquare But very little of the drift f
- Our idea: Utilize the drift term for our blind problems

SDEs for unknown forward operators (1)

- \blacksquare Let $(\mathbf{x}_0 = \mathsf{clean} \text{ image}, \ \mathbf{y} = \mathsf{corrupted} \text{ image})$ from a paired dataset
- Idea: Realize increasing corruption of image via new forward SDE

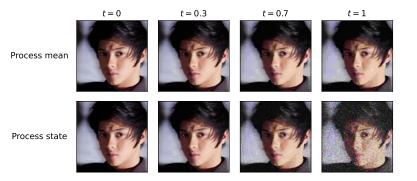


- Drift $\mathbf{f} = \gamma F(t)(\mathbf{y} \mathbf{x}_t)$ pulls \mathbf{x}_t towards \mathbf{y}
 - \Rightarrow adds the corruption in y over increasing process time t
 - \twoheadrightarrow ${\bf f}$ affine in ${\bf x}_t \Rightarrow$ closed-form mean and variance

→ Solving the Reverse SDE removes the corruption

SDEs for unknown forward operators (2)

Forward process, illustrated



- Adds relatively little noise even at t = 1.0
- Diffuses within a much smaller region than classic SGMs

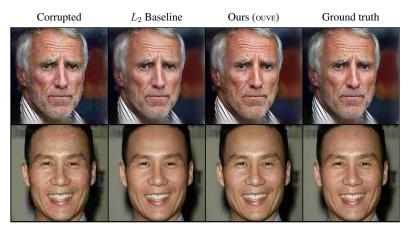
Task: JPEG Artifact Removal

- Example task with nonlinear forward operator
- We **do not** inform models about quality factor or how JPEG works
- Train NCSN++ network^[2] on CelebA-HQ 256x256
 - Random JPEG quality factors 0–30%
 - Proposed: Train as task-adapted score model
 - **Baseline:** Train via simple *L*₂ regression
- Forward SDE drift term: $\mathbf{f} = \gamma(\mathbf{y} \mathbf{x}_t)$
 - → {Ornstein-Uhlenbeck + Variance Exploding} (OUVE) SDE
- Solve Reverse SDE with Euler-Maruyama, N = 100 steps

^[2] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, "Score-based generative modeling through stochastic differential equations," Int. Conf. on Learning Representations (ICLR), 2021.

DASHH.

Input JPEG quality level 10%:



Outperforms regression baseline with same network architecture
 Much better at fine details & modeling the clean image distribution

Blind Drifting: Diffusion models with a linear SDE drift term for blind image restoration tasks

	KID↓	$FID{\downarrow}$	$LPIPS{\downarrow}$	$SSIM\uparrow$
Corrupted	22.53	36.26	0.20	0.82
Baseline	38.18	45.92	0.13	0.90
Ours (OUVE)	2.37	15.69	0.08	0.83

Table: Metrics for JPEG quality factor 10%

✓ Our SGM beats the L₂ baseline perceptually and in terms of distribution metrics

- Power of the SDE formalism for SGMs should be explored further
 - Drift term f is often ignored
- A simple affine drift term can adapt SGMs to image-to-image tasks
 - Qualitatively different outputs than regression baseline even with
 - the same training dataset
 - the same DNN architecture
 - no loss engineering or feature engineering
 - ✓ Training: similarly simple as supervised regression
 - Needs relatively few steps even with basic solvers
 - No intricate knowledge of corruption needed

- J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, "Deep unsupervised learning using nonequilibrium thermodynamics," in *International Conference on Machine Learning*, 2015, pp. 2256–2265.
- [2] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, "Score-based generative modeling through stochastic differential equations," Int. Conf. on Learning Representations (ICLR), 2021.
- [3] B. Kawar, M. Elad, S. Ermon, and J. Song, "Denoising diffusion restoration models," in ICLR Workshop on Deep Generative Models for Highly Structured Data, 2022. [Online]. Available: https://openreview.net/forum?id=BExXihV0vWq.
- [4] H. Chung, J. Kim, M. T. Mccann, M. L. Klasky, and J. C. Ye, "Diffusion posterior sampling for general noisy inverse problems," arXiv preprint arXiv:2209.14687, 2022.
- [5] M. Ehrlich, L. Davis, S.-N. Lim, and A. Shrivastava, "Quantization guided JPEG artifact correction," in *Eur. Conf. Comput. Vis.*, Springer, 2020, pp. 293–309.

Training objective: Minimize L^2 loss between model output and the score

$$\|\mathbf{s}_{\theta}(\mathbf{x}, \mathbf{y}, t) - \nabla_{\mathbf{x}} \log p_{0t}(\mathbf{x} | \mathbf{x}_{0}, \mathbf{y}) \|_{2}^{2}.$$
(4)

When p_{0t} is Gaussian, its score equals

$$\nabla_{\mathbf{x}} \log p_{0t}(\mathbf{x}|\mathbf{x}_0, \mathbf{y}) = -\frac{\mathbf{x} - \boldsymbol{\mu}(\mathbf{x}_0, \mathbf{y}, t)}{\sigma(t)^2} = \frac{-\mathbf{z}}{\sigma(t)}, \quad (5)$$

where $\mathbf{x} = \boldsymbol{\mu}(\mathbf{x}_0, \mathbf{y}, t) + \sigma(t) \mathbf{z}$, $\mathbf{z} \sim \mathcal{N}_{\mathbb{C}}(0, \mathbf{I})$.

 \Rightarrow s_{θ} is trained as a task-adapted Gaussian denoiser, able to deal with multiple noise scales

- QGAC^[5] is a SotA method for JPEG artifact removal
- TSDVE: $\mathbf{f} = \gamma t (\mathbf{y} \mathbf{x}_t)$

	KID↓	$FID{\downarrow}$	LPIPS↓	$SSIM\uparrow$
Corrupted	22.53	36.26	0.20	0.82
QGAC	46.89	53.97	0.14	0.90
Baseline	38.18	45.92	0.13	0.90
Ours (TSDVE)	2.32	15.72	0.08	0.83
Ours (OUVE)	2.37	15.69	0.08	0.83

Table: Metrics for JPEG quality factor 10%

^[5] M. Ehrlich, L. Davis, S.-N. Lim, and A. Shrivastava, "Quantization guided JPEG artifact correction," in Eur. Conf. Comput. Vis., Springer, 2020, pp. 293–309.