

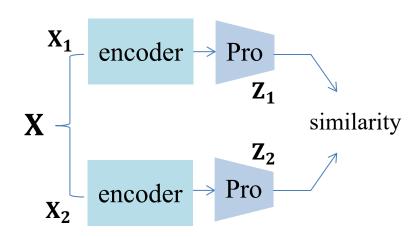
An Investigation into Whitening Loss for Self-supervised Learning

Xi Weng¹, Lei Huang^{1, 2}, Lei Zhao¹, Rao Muhammad Anwer², Salman Khan², Fahad Shahbaz Khan²

¹SKLSDE, Institute of Artificial Intelligence, Beihang University ²Mohamed bin Zayed University of Artificial Intelligence, UAE

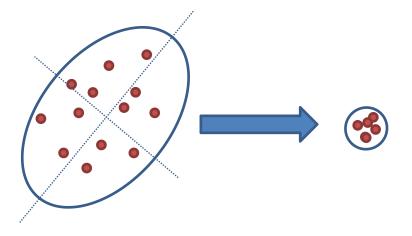
Siamese Network and Collapse

➤ Simaese Network

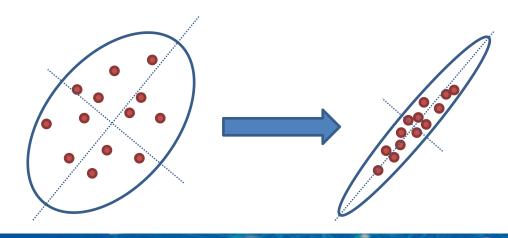


$$\mathcal{L}(\mathbf{x}, \theta) = \mathbb{E}_{\mathbf{x} \sim \mathbb{D}, \ \mathcal{T}_{1,2} \sim \mathbb{T}} \ \ell(f_{\theta}(\mathcal{T}_{1}(\mathbf{x})), f_{\theta}(\mathcal{T}_{2}(\mathbf{x})))$$

➤ Complete Collapse



➤ Dimensional Collapse



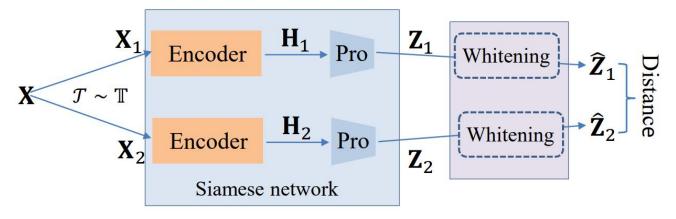
Whitening loss

> Structure of whitening loss:

H: encoding

Z: embeding

 $\hat{\mathbf{Z}}$: whitened output



$$\min_{\theta} \mathcal{L}(\mathbf{x}; \theta) = \mathbb{E}_{\mathbf{x} \sim \mathbb{D}, \ \mathcal{T}_{1,2} \sim \mathbb{T}} \ \ell(\mathbf{z}_1, \mathbf{z}_2),$$

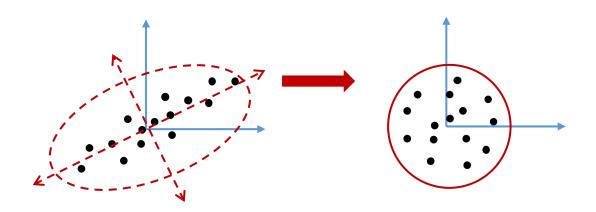
$$s.t. \ cov(\mathbf{z}_i, \mathbf{z}_i) = \mathbf{I}, \ i \in \{1, 2\}.$$

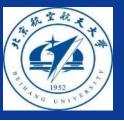
$$\min_{\theta} \mathcal{L}(\mathbf{X}; \theta) = \mathbb{E}_{\mathbf{X} \sim \mathbb{D}, \ \mathcal{T}_{1,2} \sim \mathbb{T}} \| \widehat{\mathbf{Z}}_1 - \widehat{\mathbf{Z}}_2 \|_F^2$$

$$with \ \widehat{\mathbf{Z}}_i = \Phi(\mathbf{Z}_i), \ i \in \{1, 2\},$$

Motivations of whitening loss

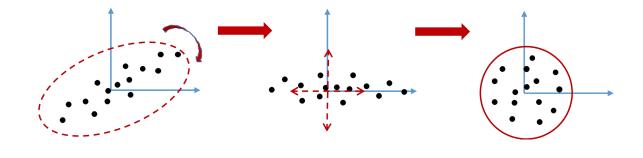
- ➤ Motivations of whitening loss:
- 1. Whitening operation can remove the correlation among axes
- 2. A whitened representation ensures the examples scattered in a **spherical distribution**



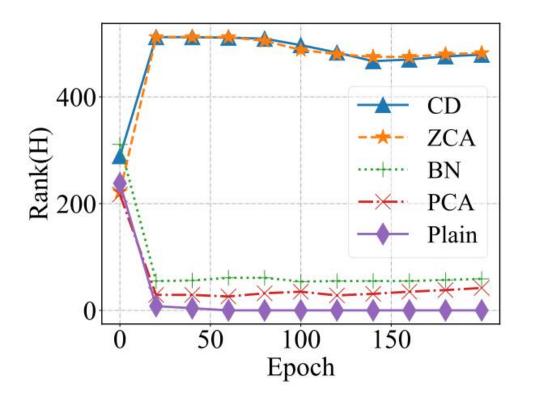


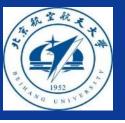
Are motivations of whitening loss correct?

> PCA Whitening (can also remove the correlation among axes)



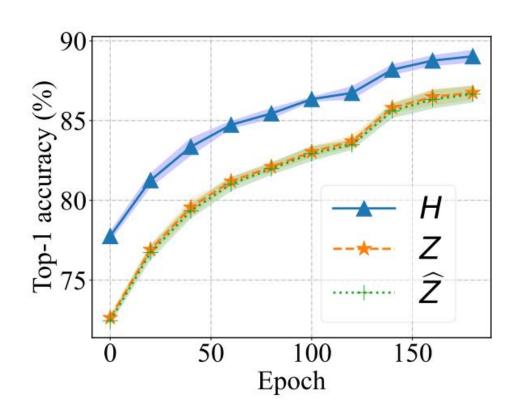
- ✓ A PCA whitened representation also ensures the examples scattered in a spherical distribution
- ➤ However, PCA Whitening Fails to Avoid Dimensional Collapse

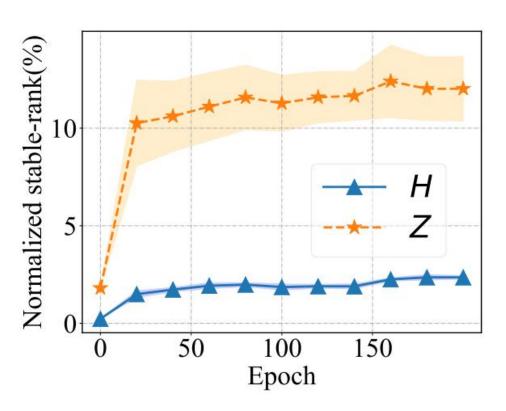




Are motivations of whitening loss correct?

➤ Whitened Output is not a Good Representation.



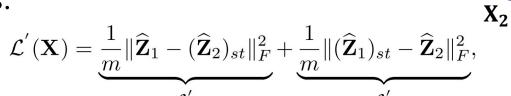


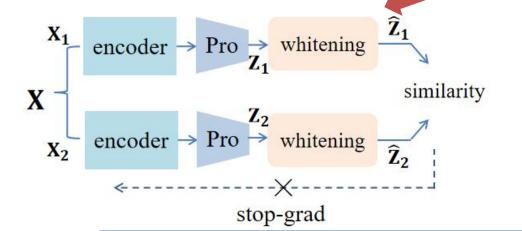
The normalized stable-rank of \hat{z} is always 100%

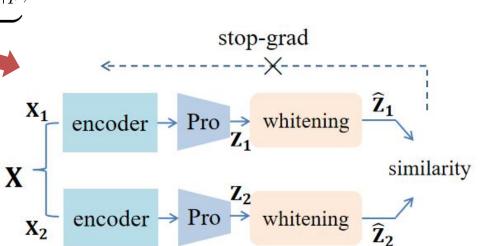
Analysing Decomposition of Whitening Loss

$$\mathcal{L}(\mathbf{X}) = \frac{1}{m} \|\widehat{\mathbf{Z}}_1 - \widehat{\mathbf{Z}}_2\|_F^2.$$

> A proxy loss:







encoder \rightarrow Pro \rightarrow whitening

encoder

→ whitening

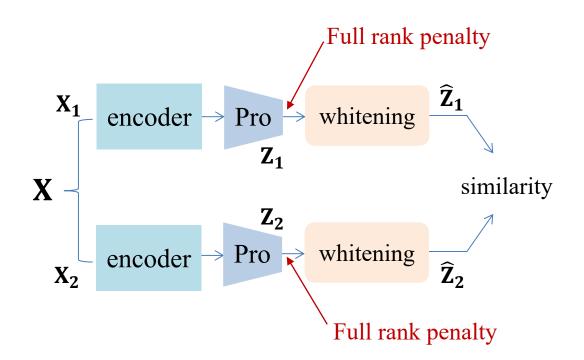
similarity

Minimizing \mathcal{L}_1' only requires the embedding $oldsymbol{Z}_1$ being full-rank, not whitened

Connection to Soft Whitening

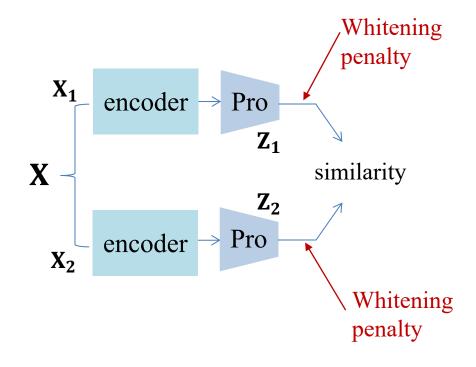
➤ Whitening loss:

$$\mathcal{L}(\mathbf{X}) = \frac{1}{m} \|\widehat{\mathbf{Z}}_1 - \widehat{\mathbf{Z}}_2\|_F^2.$$



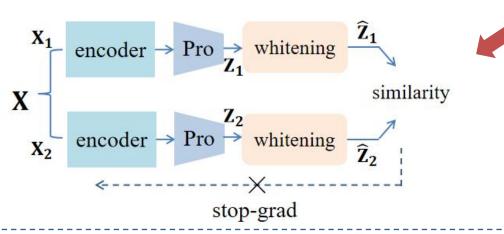
➤ VICReg:

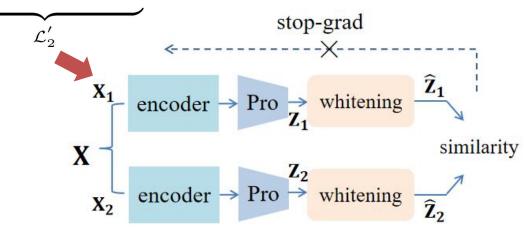
$$\mathcal{L}(\mathbf{X}) = \frac{1}{m} \|\mathbf{Z}_1 - \mathbf{Z}_2\|_F^2 + \alpha \sum_{i=1}^2 (\|\frac{1}{m} \mathbf{Z}_i \mathbf{Z}_i^T - \lambda \mathbf{I}\|_F^2),$$

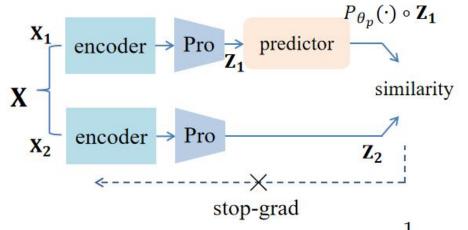


Connection to Asymmetic Methods

$$\text{Whitening loss:} \qquad \mathcal{L}'(\mathbf{X}) = \underbrace{\frac{1}{m} \|\widehat{\mathbf{Z}}_1 - (\widehat{\mathbf{Z}}_2)_{st}\|_F^2} + \underbrace{\frac{1}{m} \|(\widehat{\mathbf{Z}}_1)_{st} - \widehat{\mathbf{Z}}_2\|_F^2},$$

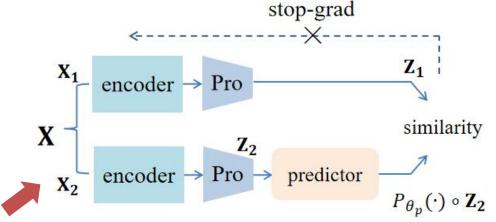




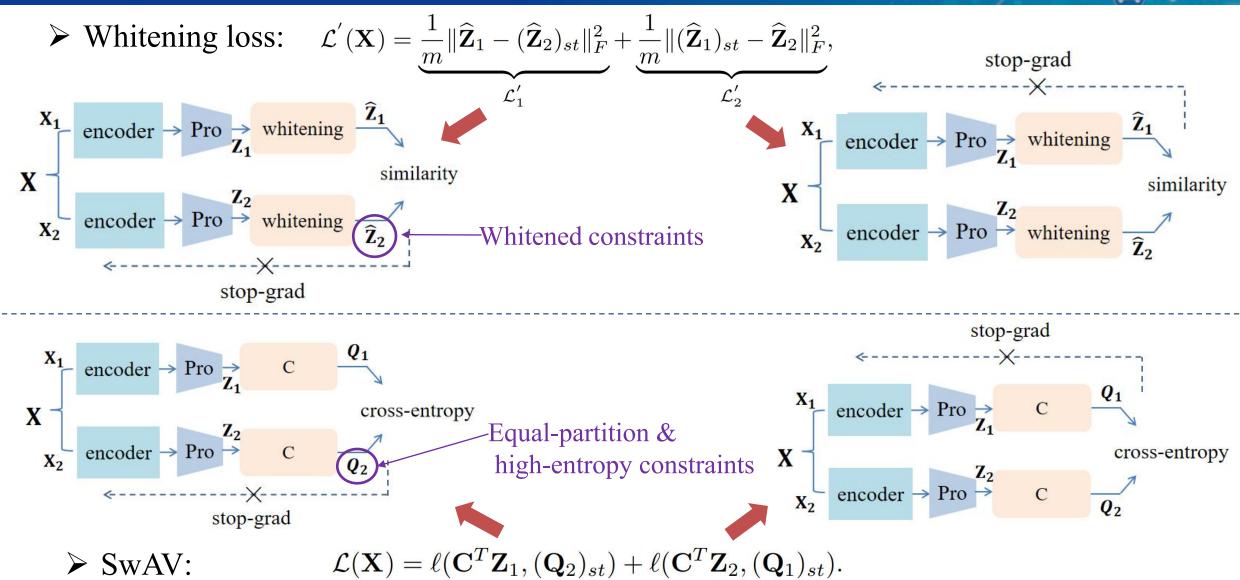


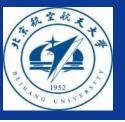
➤ SimSiam:

$$\mathcal{L}(\mathbf{X}) = \frac{1}{m} \|P_{\theta_p}(\cdot) \circ \mathbf{Z}_1 - (\mathbf{Z}_2)_{st}\|_F^2 + \frac{1}{m} \|P_{\theta_p}(\cdot) \circ \mathbf{Z}_2 - (\mathbf{Z}_1)_{st}\|_F^2,$$

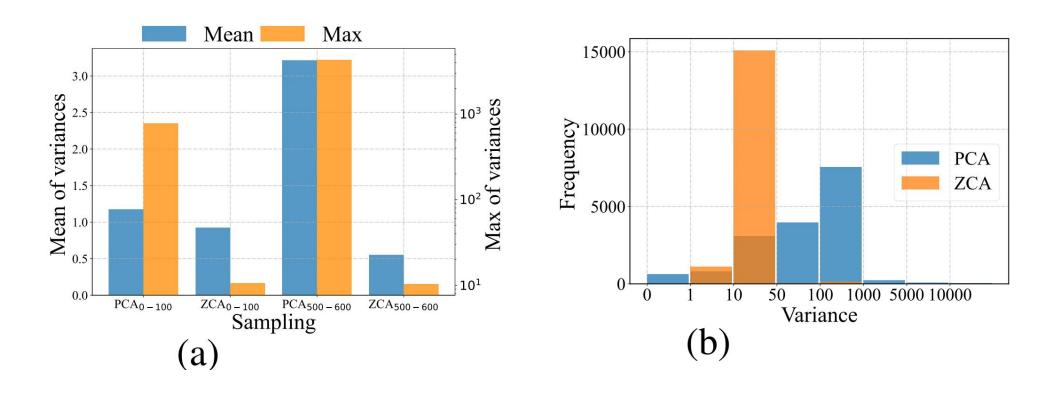


Connection to Other Non-contrastive Methods

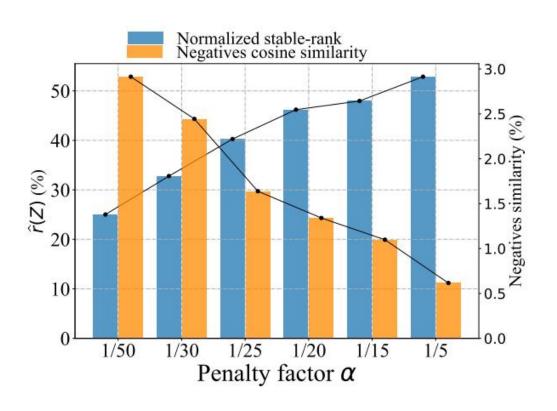




Why PCA Whitening Fails to Avoid Dimensional Collapse?



> PCA whitening: volatile sequence of whitened targets

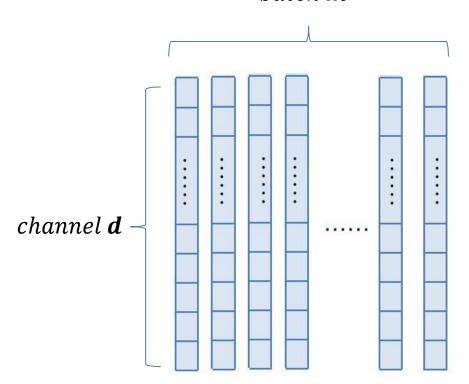


Similarity decreases when extent of whitening increases

A whitened output leads to the state that can break the potential manifold the examples in the same class belong to

Channel Whitening (CW)

batch **m**



➤ Batch whitening (BW)

- centering: $Z_B = Z \cdot (I \frac{1}{m} \cdot 1 \cdot 1^T)$
- $\widehat{Z} = \Phi \cdot Z_B$

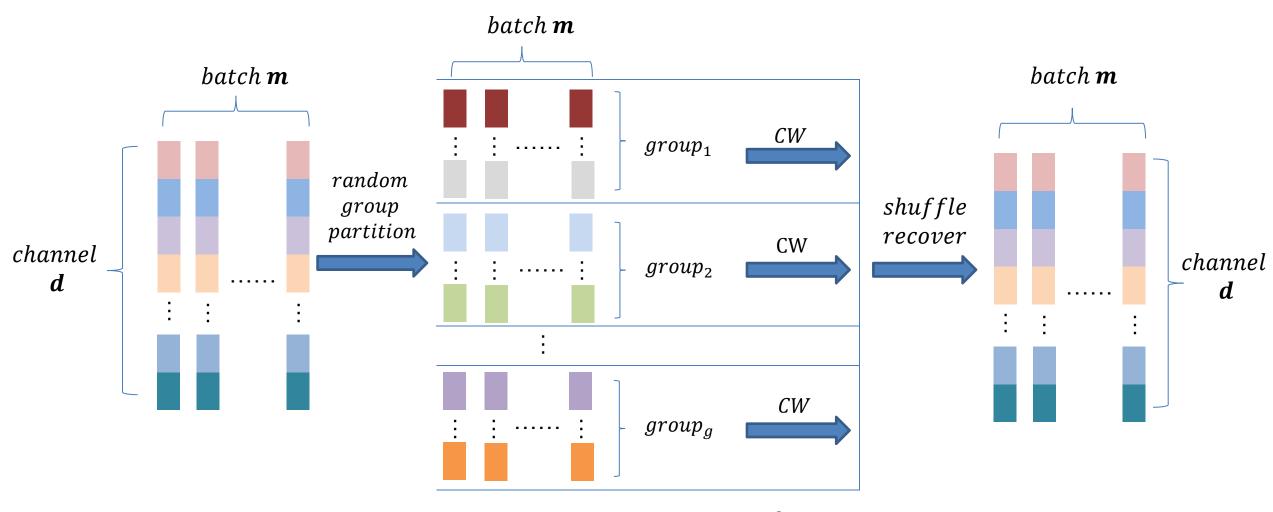
requires $\mathbf{m} > \mathbf{d}$ to avoid numerical instability.

➤ Channel whitening (CW)

- centering: $Z_c = (I \frac{1}{d} \mathbf{1} \cdot \mathbf{1}^T) \cdot Z$
- $\widehat{Z} = Z_C \cdot \Phi$

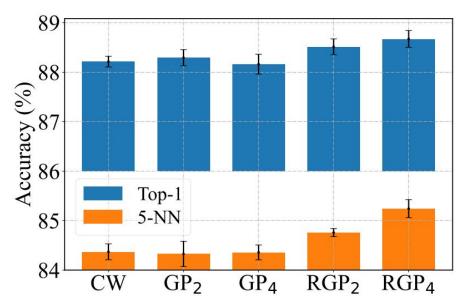
can obtain numerical stability when the batch size is small, since the condition that d > m can be obtained by design.

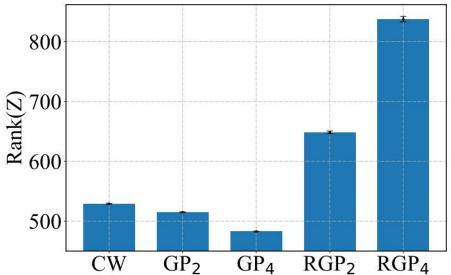
Random Group Partition (RGP)

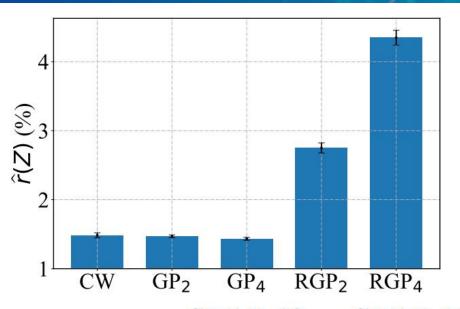


dimension of every group =
$$\frac{d}{g}$$

Random Group Partition (RGP)







CIFA	R-10	CIFAR-100			
linear 5-nn		linear 5-nn			
91.66	88.99	66.26	56.36		
91.61	88.89	66.17	56.53		
91.92	89.54	67.51	57.35		
92.10	90.12	66.90	57.12		
92.08	90.06	67.34	57.28		
92.47	90.74	68.26	58.67		
	91.66 91.61 91.92 92.10 92.08	linear 5-nn 91.66 88.99 91.61 88.89 91.92 89.54 92.10 90.12 92.08 90.06	CIFAR-10 CIFAR linear 5-nn linear 91.66 88.99 66.26 91.61 88.89 66.17 91.92 89.54 67.51 92.10 90.12 66.90 92.08 90.06 67.34 92.47 90.74 68.26		

Experiments for Empirical Study

> Experimental Setup for Comparison of Baselines

Table 1: Classification accuracy (top 1) of a linear classifier and a 5-nearest neighbors classifier for different loss functions and datasets with a ResNet-18 encoder.

Method	CIFAR-10		CIFAR-100		STL-10		Tiny-ImageNet	
Method	linear	5-nn	linear	5-nn	linear	5-nn	linear	5-nn
SimCLR [6]	91.80	88.42	66.83	56.56	90.51	85.68	48.84	32.86
BYOL [16]	91.73	89.45	66.60	56.82	91.99	88.64	51.00	36.24
SimSiam [8] (repro.)	90.51	86.82	66.04	55.79	88.91	84.84	48.29	34.21
Shuffled-DBN [21] (repro.)	90.45	88.15	66.07	56.97	89.20	84.51	48.60	32.14
Barlow Twins [45] (repro.)	88.51	86.53	65.78	55.76	88.36	83.71	47.44	32.65
VICReg [2] (repro.)	90.32	88.41	66.45	56.78	90.78	85.72	48.71	33.35
Zero-ICL [48] (repro.)	88.12	86.64	61.91	53.47	86.35	82.51	46.25	32.74
W-MSE 2 [12]	91.55	89.69	66.10	56.69	90.36	87.10	48.20	34.16
W-MSE 4 [12]	91.99	89.87	67.64	56.45	91.75	88.59	49.22	35.44
CW-RGP 2 (ours)	91.92	89.54	67.51	57.35	90.76	87.34	49.23	34.04
CW-RGP 4 (ours)	92.47	90.74	68.26	58.67	92.04	88.95	50.24	35.99



Experiments for Empirical Study

> Experimental Setup for Large-Scale Classification

Table 2: Comparisons on ImageNet linear classification. All are based on ResNet-50 encoder. The table is mostly inherited from [8].

Method	Batch size	100 eps	200 eps
SimCLR [6]	4096	66.5	68.3
MoCo v2 [7]	256	67.4	69.9
BYOL [16]	4096	66.5	70.6
SwAV [4]	4096	66.5	69.1
SimSiam [8]	256	68.1	70.0
W-MSE 4 [12]	4096	69.4	_
Zero-CL [48]	1024	68.9	-
BYOL [16] (repro.)	512	66.1	69.2
SwAV [4] (repro.)	512	65.8	67.9
W-MSE 4 [12] (repro.)	512	66.7	67.9
CW-RGP 4 (ours)	512	69.7	71.0

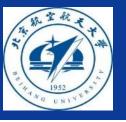
Experiments for Empirical Study

> Transfer to downstream tasks

Table 3: Transfer Learning. All competitive unsupervised methods are based on 200-epoch pretraining in ImageNet (IN). The table is mostly inherited from [8]. Our CW-RGP is performed with 3 random seeds, with mean and standard deviation reported.

Method	VOC 07+12 detection			(COCO detection			COCO instance seg.		
	AP_{50}	AP	AP_{75}	AP_{50}	AP	AP ₇₅	AP_{50}	AP	AP_{75}	
Scratch	60.2	33.8	33.1	44.0	26.4	27.8	46.9	29.3	30.8	
IN-supervised	81.3	53.5	58.8	58.2	38.2	41.2	54.7	33.3	35.2	
SimCLR [6]	81.8	55.5	61.4	57.7	37.9	40.9	54.6	33.3	35.3	
MoCo v2 [7]	82.3	57.0	63.3	58.8	39.2	42.5	55.5	34.3	36.6	
BYOL [16]	81.4	55.3	61.1	57.8	37.9	40.9	54.3	33.2	35.0	
SwAV [4]	81.5	55.4	61.4	57.6	37.6	40.3	54.2	33.1	35.1	
SimSiam [8]	82.0	56.4	62.8	57.5	37.9	40.9	54.2	33.2	35.2	
# Total										

CW-RGP (ours) $82.2_{\pm 0.07}$ 57.2 $_{\pm 0.10}$ 63.8 $_{\pm 0.11}$ 60.5 $_{\pm 0.28}$ 40.7 $_{\pm 0.14}$ 44.1 $_{\pm 0.14}$ 57.3 $_{\pm 0.16}$ 35.5 $_{\pm 0.12}$ 37.9 $_{\pm 0.14}$



- ➤ Take Away
 - > A in-depth analysis in whitening loss
 - ➤ A effective SSL method: CW-RGP

Thank you

https://github.com/winci-ai/CW-RGP