Emergent Correspondence from Image Diffusion

Luming Tang*

Menglin Jia*

Qianqian Wang* Cheng Perng Phoo Bharath Hariharan

*Equal Contribution

TL; DR

Correspondences emerge from image diffusion models *without any explicit supervision*.

- A fundamental problem in computer vision
- Critical building block for many tasks

3D reconstruction

image editing

video tracking

https://www.cs.cornell.edu/~snavely/bundler; https://neural-congealing.github.io; https://co-tracker.github.io

• Easy for humans: learned without any correspondence labels

match object parts across viewpoint and lighting changes

• Easy for humans: learned without any correspondence labels

match object parts across instances, categories, and even modalities

- Easy for humans: learned without any correspondence labels
- Hard for computers: need to train with large-scale labeled data

LoFTR: Detector-Free Local Feature Matching with Transformers [Sun et al. 2021] TransforMatcher: Match-to-Match Attention for Semantic Correspondence [Kim et al. 2022]

- Easy for humans: learned without any correspondence labels
- Hard for computers: need to train with large-scale labeled data

Can computer vision system similarly learn accurate correspondences **without** labeled data?

• A family of generative models with superior image generation capabilities.

images generated by Stable Diffusion

- Superior image generation capacities.
- Also enable image-to-image translation.

Implicit Correspondence?

 $Cat \rightarrow Dog$

https://pix2pixzero.github.io

- Learning to generate by denoising
 - Forward process gradually add Gaussian noise to input data

$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{(1 - \bar{\alpha}_t)} \epsilon$$
 where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

data

Figures modified from https://cvpr2023-tutorial-diffusion-models.github.io

- Learning to generate by denoising
 - Forward process gradually add Gaussian noise to input data
 - Backward process learn to predict and remove noise

$$\epsilon_{\theta}(x_t, t) \to \epsilon$$

• Learning to generate by denoising

- Forward process gradually add Gaussian noise to input data
- Backward process learn to predict and remove noise

$$\epsilon_{\theta}(x_t, t) \to \epsilon$$

Figures modified from https://cvpr2023-tutorial-diffusion-models.github.io

Diffusion Features

Given an input image, we extract image features using a pretrained diffusion model, then use them to do correspondence tasks.

Diffusion Features

1. Add noise to input image x_0 to get x_t

Figures modified from https://cvpr2023-tutorial-diffusion-models.github.io

Diffusion Features

- 1. Add noise to input image x_0 to get x_t
- 2. Feed x_t and *t* into the denoising network $\epsilon_{\theta}(x_t, t)$

Diffusion Features (DIFT)

- 1. Add noise to input image x_0 to get x_t
- 2. Feed x_t and t into the denoising network $\epsilon_{\theta}(x_t, t)$
- 3. Get intermediate feature maps at certain block *i* as DIFT

Diffusion Features (DIFT)

- 1. Add noise to input image x_0 to get x_t
- 2. Feed x_t and t into the denoising network $\epsilon_{\theta}(x_t, t)$
- 3. Get intermediate feature maps at certain block *i* as DIFT
- 4. Interpolate the feature map to get each point's feature vector

Diffusion Features (DIFT)

- 1. Add noise to input image x_0 to get x_t
- 2. Feed x_t and t into the denoising network $\epsilon_{\theta}(x_t, t)$
- 3. Get intermediate feature maps at certain block *i* as DIFT
- 4. Interpolate the feature map to get each point's feature vector
- 5. Feature matching using cosine similarity to get correspondences

No Extra Training Needed

• Without any explicit supervision, DIFT can find correspondences on real images across instances, categories, and even domains.

DIFT Predicted Target Points

• Without any explicit supervision, DIFT can find correspondences on real images across instances, categories, and even domains.

DIFT Predicted Target Points

- Eval Dataset: SPair, 12k image pairs on 18 categories
- Baselines:
 - a) Supervised Methods: trained with correspondence labels
 - b) Weakly-Supervised Methods: trained with image pairs
 - c) Off-the-shelf self-supervised features: DINO, OpenCLIP

• DIFT outperforms self-supervised features and weakly-supervised methods with large margin, even on par with SOTA supervised methods.

• DINO vs. DIFT_{adm} : both trained on ImageNet without class labels

Source Image

DINO

• DIFT can propagate edits from one image to others across different instances, categories, and domains.

• DIFT shows competitive performance on finding geometric correspondences, i.e., image matching and homography estimation.

Viewpoint Change

Illumination Change

• DIFT shows competitive performance on finding geometric correspondences, i.e., image matching and homography estimation.

DIFT can do temporal correspondence

• DIFT demonstrates strong performance on temporal correspondence tasks, although never trained or fine-tuned on video data.

object segmentation using DIFT

DIFT can do temporal correspondence

• DIFT demonstrates strong performance on temporal correspondence tasks, although never trained or fine-tuned on video data.

pose tracking using DIFT

Thank you for watching!

More visualizations and the interactive demo at our project page:

https://diffusionfeatures.github.io

