

FiGURe: Simple and Efficient Unsupervised Node Representations with Filter Augmentations

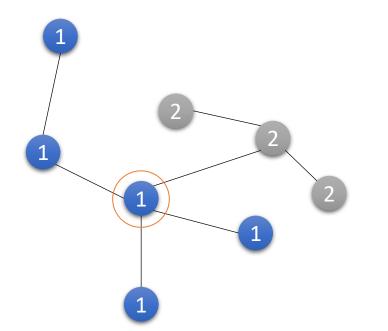
Chanakya Ekbote*

Ajinkya Deshpande*

Arun lyer

Sundararajan Sellamanickam

Homophily and Heterophily



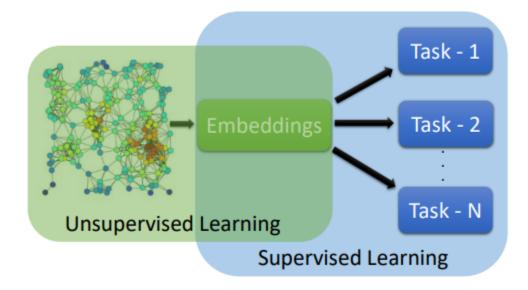
Homophily: Majority of the neighbors belong to the same class

Heterophily: Majority of the neighbors belong to different classes

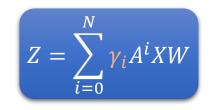
Problem Setting

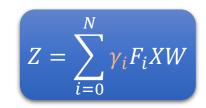
Given a graph and node features:

Generate embeddings that: work on tasks with different levels of homophily



GPRGNN (Or where do GCNs fail)?

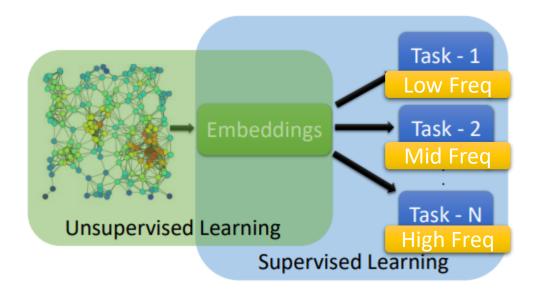


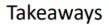


- Long-range information is not effectively leveraged by conventional GCNs.
- Conventional GCNs face challenges with tasks involving heterophilic graphs as data.
- Fine-tuning of coefficients γ_i is necessary for downstream tasks.

Learn Embeddings Per Filter

Problem

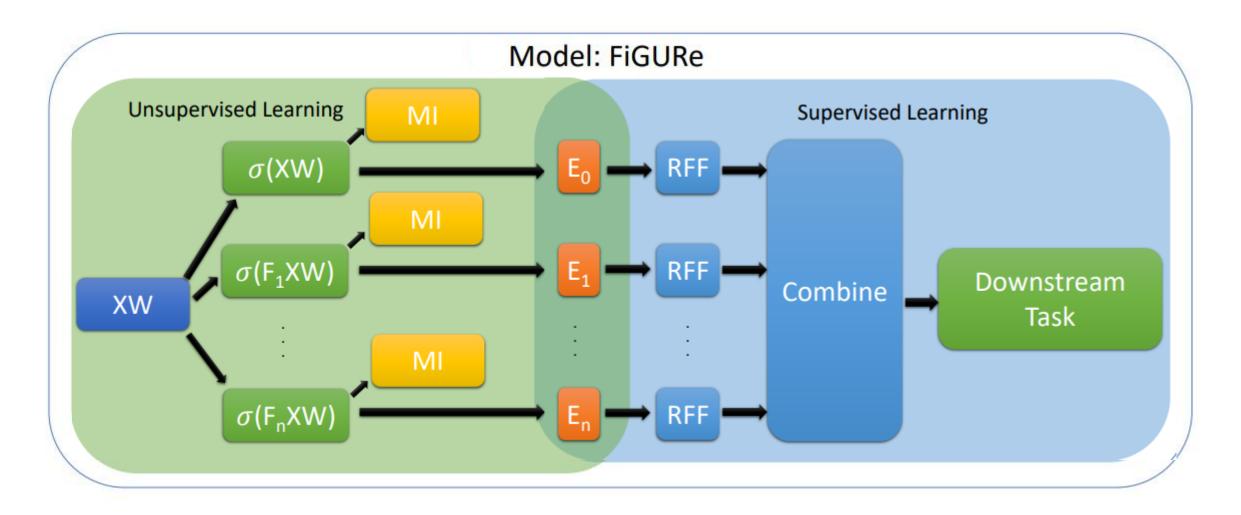




Main Takeaway - 1: Need to learn embeddings for different filters that can be combined in different ways for downstream tasks.

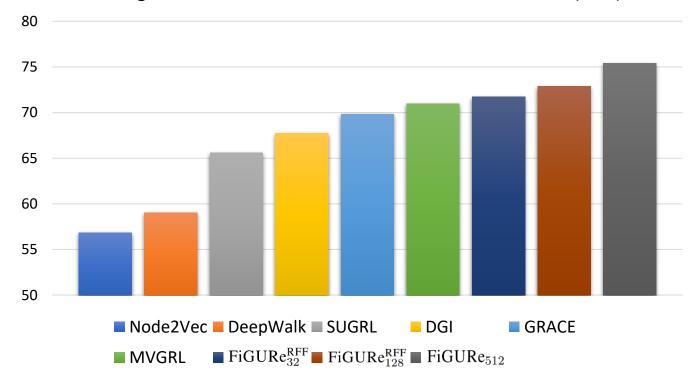
Main Takeaway - 2: **Storage cost** of multiple large sized embeddings **is huge**.

FiGURe

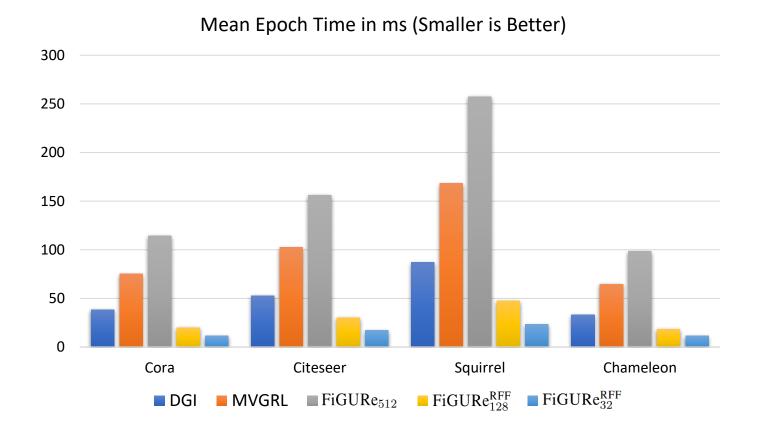


Comparison with SoTA Models

Average Node Classification Accuracies Across Datasets (in %)



RFF – Computational Efficiency



Conclusion

- Enhancing graph contrastive learning with **filter-specific representations**
- Alleviating computational/storage burdens through low-dimensional representations and preserving the performance using RFF
- Future directions involve
 - Expanding the theoretical analysis of contrastive learning to graphs
 - Investigating linear separability in lower dimensions

Contact

• Correspondence: chanakya.ekbote@epfl.ch (Chanakya Ekbote)

• Link to source code: <u>https://github.com/microsoft/figure</u>