Transformer as a hippocampal memory consolidation model based on NMDAR-inspired nonlinearity

Dong-Kyum Kim^{1*} Jea Kwon^{2*} Meeyoung Cha^{1,3†} C. Justin Lee^{2†}

¹Data Science Group, IBS ²Center for Cognition and Sociality, IBS ³School of Computing, KAIST

*Equal contributions; [†]Corresponding authors.

37th Conference on Neural Information Processing Systems (NeurIPS 2023)

Memory formation is key in intelligent systems

"Memory Consolidation," Wikipedia, last modified April 10, 2023, https://en.wikipedia.org/wiki/Memory_consolidation

Short-term working memory use transient information

Long-term reference memory retrieve previous information

Memory consolidation is a process that transforms STWM into LTRM

NMDA receptor in brain makes this happen

NMDA receptor has nonlinearity

NMDA receptor nonlinearity disappears without Magnesium ion (Mg2+)

We observe NMDAR nonlinearity in brain resembles the nonlinear activation function in Transformer

We propose a new activation function for transformers that mimics brain's nonlinearity (Mg²⁺ of NMDAR)

$$NMDA_{\alpha}(x) = \frac{x}{1 + \alpha e^{-x}}$$

RQ 1: How would NMDAR-like nonlinearity perform in Transformer?

Memory Consolidation STWM → LTRM

NMDAR Nonlinearity

Transformer

We will test two memory functions:

Short-term working memory

Visited place prediction

Action (a) $\rightarrow \uparrow \rightarrow \downarrow \leftarrow$ Observation (x)ABAEA

Long-term reference memory

Unvisited place prediction

by designing a 2D navigation task

Experimental details

- We prepare *N* number of training maps.
- For each map, a random sensory observation among 10 letters are randomly placed at each node on each map.
- In a single trial, a randomly selected map from training maps is given to the agent.
- The agent starts at a random position and initiates a random walk on the selected map.

Two types of memory error in Transformer

When answer is in the *context* - **STWM** error When answer is <u>not</u> in the *context* - **LTRM** error

Our data show NMDA receptor nonlinearity controls long-term reference memory (LTRM)

LTRM improves with increasing α (similar to how animal brain works)

The improvement saturates after certain α (similar to how animal brain works)

RQ 2: Can NMDAR nonlinearity attribute to place cell emergence in Transformer?

(McHugh et al., Cell 1996; Kentros et al., Science 1998)

Our data show place cells emerge in the Transformer's FFN (feed-forward network)

Our data show transformers with high long-term memory forms more place cells (similar to brain)

Summary

1. We proposed a new activation function that is inspired by the nonlinear dynamics of NMDA receptors in brain (**NMDA** α) where α mimics the Mg²⁺ concentration level.

$$NMDA_{\alpha}(x) = \frac{x}{1 + \alpha e^{-x}}$$

- 2. We developed a method for accessing the **reference memory**.
- 3. We evaluated the reference memory errors of **transformer** models with NMDA α . The results shows that *reference memory can be controlled by* α .
- 4. NMDA α with α =10 shows the **best reference memory performance** when compared to other widely used nonlinear activation functions.
- 5. We demonstrated the emergence of **place cells** in feed-forward networks of transformer for the first time.
- Reference memory is impaired when the value of α in NMDAα is low and this resembles long-term memory loss in brain; low Mg²⁺ concentration in brain causes long-term memory loss.