

Egocentric Planning for Scalable Embodied Task Achievement

Xiaotian Liu^{1,2}, Hector Palacios², Christian Muise³

1. University of Toronto 2. ServiceNow Research 3. Queen's University

Embodied Instruction Following (EIF)

Visual Observation

Action Sequence

Language Instruction

ALFRED Benchmark

Challenges for EIF

- Language/visual grounding
- Partially observable environment
- Long horizon/Sparse Reward

Approach

- End-to-end neural approach
 - Minimal human knowledge
 - Computation/Sample inefficient
 - Performance degradation for long horizon

ALFRED: https://arxiv.org/pdf/1912.01734.pdf

- Better performance
- Modularity
- Human modeling
- Fixed policy

Approach

- Reasoning via AI planning problem
- Egocentric Planning
 - Handles unknown environmental observations
 - Works with off-shell planner
 - Robust to observation errors and action failures
- Zero-shot generalization to new task types

Perception Modules

Visual Perception

Goal Extraction

Semantic Location Graph

Node Information: 1. Depth Mask 2. Segmentation Masks 3. Object Information {'Object_1': {"Type: 'TableType' Average Pixel Dist: 0.75 Mask: [[0,0,1...], Status: {'TogOn:False, ..}

*Initial 500 random Exploration to generate exploration candidate

Egocentric Planning

Algorithm 1 Iterative Exploration Replanning (IER) **Input:** Environment $\langle A_{\mathcal{E}}, \mathcal{T}_{\mathcal{E}}, \mathcal{V}_{\mathcal{E}}, \mathsf{reset}, \mathsf{step} \rangle$ **Input:** Planning domain $\mathcal{PD} = \langle \mathcal{T}, \mathcal{V}, \mathcal{P}, \mathcal{A}, \Phi \rangle$ **Input:** Anchor Types & Exploration Acts $\langle \mathcal{T}_a, \mathcal{X} \rangle$ **Input:** Mental state Init & Update $\langle M_{I}^{\mathcal{PD}}, M_{II}^{\mathcal{PD}} \rangle$ **Input:** Task $\langle I_{\mathcal{E}}, G_{\mathcal{E}} \rangle$ **Output:** Successful trace τ or Failure 1: $p \leftarrow \operatorname{reset}(I_{\mathcal{E}}, G_{\mathcal{E}}) \triangleright \operatorname{I}$ 2: $\mathcal{O}, I, G \leftarrow M_I^{\mathcal{PD}}(p, I_{\mathcal{E}}, G_{\mathcal{E}})$ ▷ Initial perception 3: $\mathcal{C} \leftarrow \{o' \mid \mathsf{type}(o') \in \mathcal{T}_a \text{ and } o' \text{ occurs in } I\}$ $\triangleright C$: Observed Anchor Objects 4: τ , solved $\leftarrow [], False$ 5: while not solved do $\pi_{solve} \leftarrow \text{Solve}(\langle \mathcal{PD}, \mathcal{O}, I, G \rangle)$ 6: 7: if π_{solve} is None then $\mathcal{A}_e \leftarrow \mathcal{A}$ 8: for $o \in \mathcal{O}$ and type $(o) \in \mathcal{T}_a$ do 9: 10: if $o \notin C$ then $I \leftarrow I \cup \{(\text{unknown } o)\}$ 11: if $(\text{unknown } o) \in I$ then 12: 13: $\mathcal{A}_e \leftarrow \mathcal{A}_e \cup \{ ExploreAct(a, o) \}$ for $a \in \mathcal{X}$ $G_e \leftarrow \{(\text{explored})\}$ 14: 15: $\pi_{explore} \leftarrow$ Solve($\langle \mathcal{PD} \text{ with } \mathcal{A}_e, \mathcal{O}, I, G_e \rangle$) **return** Failure if **if** $\pi_{explore}$ is None 16: 17: for $a \in \pi_{explore}$ do $p, c \leftarrow step(a)$ 18: Break **if** failed $\in p$ 19: 20: τ .append(a) $\mathcal{O}, I \leftarrow M_{U}^{\mathcal{PD}}(\mathcal{O}, I, a, p, c)$ 21: 22: if $a \in \mathcal{X}$ then 23: $\mathcal{C} \leftarrow \mathcal{C} \cup \{o' \mid \mathsf{type}(o') \in \mathcal{T}_a$ and o' argument of a} 24: else 25: for $a \in \pi_{solve}$ do $p, c \leftarrow \mathsf{step}(a)$ 26: 27: Break **if** failed $\in p$ 28: τ .append(a) $\mathcal{O}, I \leftarrow M_U^{\mathcal{PD}}(\mathcal{O}, I, a, p, c)$ 29: 30: solved \leftarrow True **if** I satisfies G 31: return τ

Results

	Test Seen				Test Unseen			
	SR	GC	PLWSR	PLWGC	SR	GC	PLWSR	PLWGC
Seq2Seq	3.98	9.42	2.02	6.27	0.39	7.03	0.08	4.26
ET	38.42	45.44	27.78	34.93	8.57	18.56	4.1	11.46
HLSM	25.11	35.15	10.39	14.17	24.46	34.75	9.67	13.13
FILM	28.83	39.55	11.27	15.59	27.8	38.52	11.32	15.13
LGS-RPA	40.05	48.66	21.28	28.97	35.41	45.24	15.68	22.76
EPA	39.96	44.14	2.56	3.47	36.07	39.54	2.92	3.91

Future Work

- More open-world Setting:
 - Unknown relationships
 - Unknown object types
- Integration with SLAM maps and 3D voxels
- Learned exploration policy based on objects/location
- LLM integration:
 - Generate knowledge base
 - Commonsense guided action

Thank You!