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Time Series Anomaly Detection

n Time series anomaly detection – identifying unusual patterns or events in a 
sequence of data collected over time.

Normal/Nominal time series

Observed time series with anomalies



Unsupervised Time Series Anomaly Detection

n Anomalies are usually rare in time series
¨ Difficult to label
¨ Distribution of anomalies hard to learn



Unsupervised Time Series Anomaly Detection

n Anomalies are usually rare in time series
¨ Difficult to label
¨ Distribution of anomalies hard to learn

n We use an unsupervised learning approach for time series anomaly detection
¨ No labeling needed
¨ Not restricted to certain anomalies

Model Model

Nominal time series Observed time series with anomalies

Prediction and EvaluationLearned distribution
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n Contextual anomalies
¨ Anomalies that cannot be detected from a 

single time point
¨ Δ𝐱!#: deviation caused by contextual 

anomalies at time 𝑡

n A detection trade-off for point and contextual anomalies
¨ More time points being considered   –   Point anomalies           Contextual anomalies 
¨ ... and vice versa!
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The Induced Anomaly Score %𝐴 ⋅

n We can use 𝑁(⋅) to induce any anomaly score 𝐴(⋅) for calculating )𝐴 ⋅ ,

)𝐴 𝑡 ≜ +
$%&'((*,!,-)

&/0(1,!2-)

𝐴(𝑡; 𝜏)

where 𝐴 𝑡; 𝜏  is the induced anomaly score at 𝑡 due to 𝜏, controlled by gate function 𝑔3!(⋅)

𝐴 𝑡; 𝜏 ≜ 𝐴(𝜏) /
4%&/0($2*,!)

&'((!,𝟙"#$,$,*)
𝑔3!(𝑁(𝑘))

𝑔3!(⋅) determines how 𝑁(⋅) will affect the induction

(a smoothed value of 𝐴(𝑡; 𝜏)
with range controlled by 𝑑)



Two Possible Gate Functions

n Soft gate function

𝑔(!(𝑁) ≜ max(0,1 −
𝑁
𝜃)
)

n Hard gate function
𝑔(! 𝑁 ≜ 𝟙)*(!

1

𝑔+!(𝑁)

𝑁𝜃,

1

𝑔+!(𝑁)

𝑁𝜃,



NPSR Achieves SOTA Results over 14 Baselines and 7 Datasets

Ours
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Detection Trade-off Between Point and Contextual Anomalies 



Conclusion

n State-of-the-art unsupervised learning framework for time series anomaly detection
n Provable superiority of the induced anomaly score 6𝐴 ⋅

https://chihyulai.com/
chihyul@mit.edu https://github.com/andrewlai61616/NPSR


