#### Nominality Score Conditioned Time Series Anomaly Detection by Point/Sequential Reconstruction (NPSR)

#### <u>Chih-Yu (Andrew) Lai</u>, Fan-Keng Sun, Zhengqi Gao, Jeffrey H. Lang, and Duane S. Boning

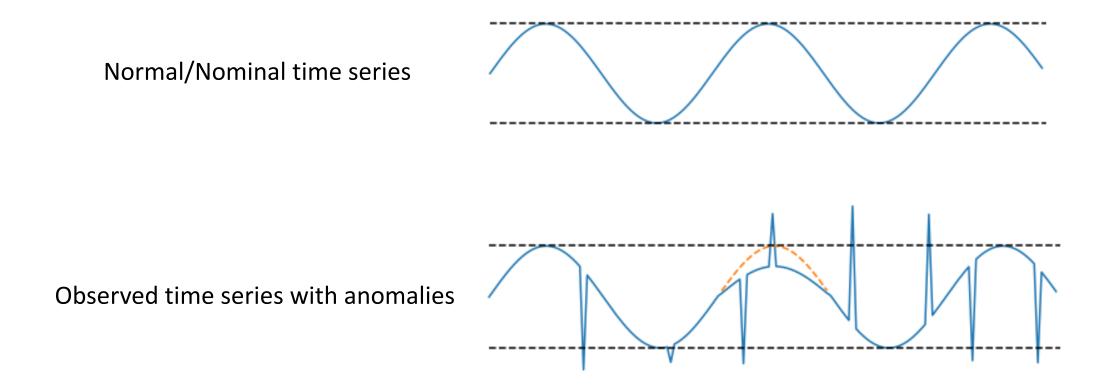
Electrical Engineering and Computer Science Massachusetts Institute of Technology





#### **Time Series Anomaly Detection**

Time series anomaly detection – identifying unusual patterns or events in a sequence of data collected over time.







#### **Unsupervised Time Series Anomaly Detection**

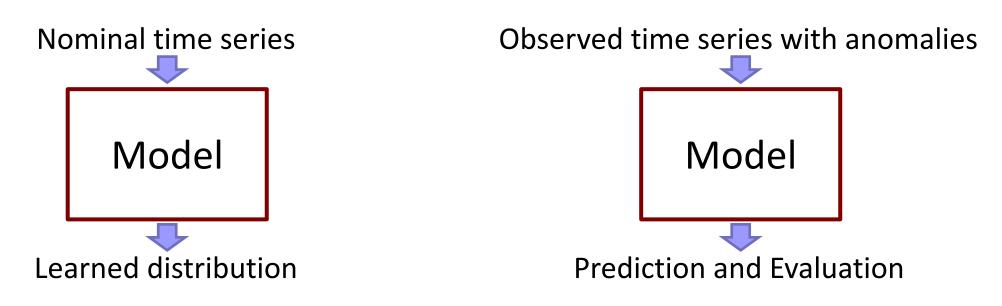
- Anomalies are usually rare in time series
  - Difficult to label
  - Distribution of anomalies hard to learn





## **Unsupervised Time Series Anomaly Detection**

- Anomalies are usually rare in time series
  - Difficult to label
  - Distribution of anomalies hard to learn
- We use an unsupervised learning approach for time series anomaly detection
  - No labeling needed
  - Not restricted to certain anomalies

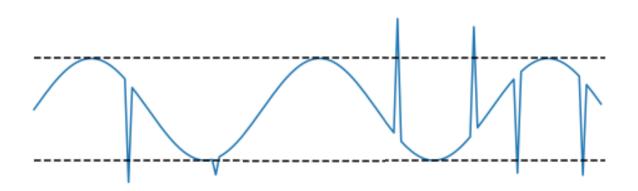






#### **Point and Contextual Anomalies**

- Point anomalies
  - Anomalies that can be detected from a single time point
  - $\Box \Delta \mathbf{x}_t^p: \text{deviation caused by point anomalies} \\ \text{at time } t$

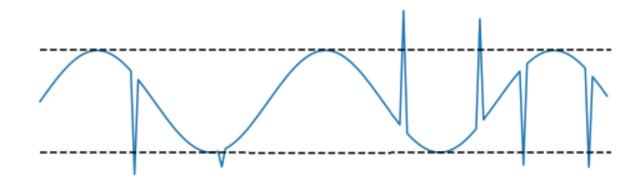




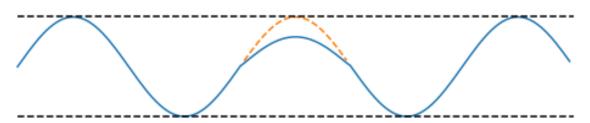


## **Point and Contextual Anomalies**

- Point anomalies
  - Anomalies that can be detected from a single time point
  - $\Box \Delta \mathbf{x}_t^p: \text{deviation caused by point anomalies} \\ \text{at time } t$



- Contextual anomalies
  - Anomalies that cannot be detected from a single time point
  - $\Box \Delta \mathbf{x}_t^c$ : deviation caused by contextual anomalies at time *t*







## **Point and Contextual Anomalies**

- Point anomalies
  - Anomalies that can be detected from a single time point
  - $\Box \Delta \mathbf{x}_t^p: \text{ deviation caused by point anomalies} \\ \text{ at time } t$

- Contextual anomalies
  - Anomalies that cannot be detected from a single time point

Contextual anomalies (::)

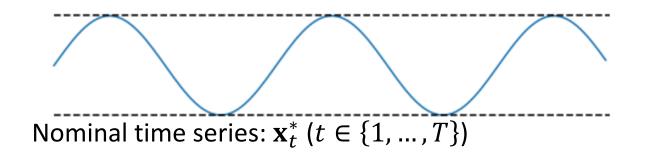
 $\Box \Delta \mathbf{x}_t^c$ : deviation caused by contextual anomalies at time *t* 

A detection trade-off for point and contextual anomalies

- More time points being considered Point anomalies
- □ ... and vice versa!



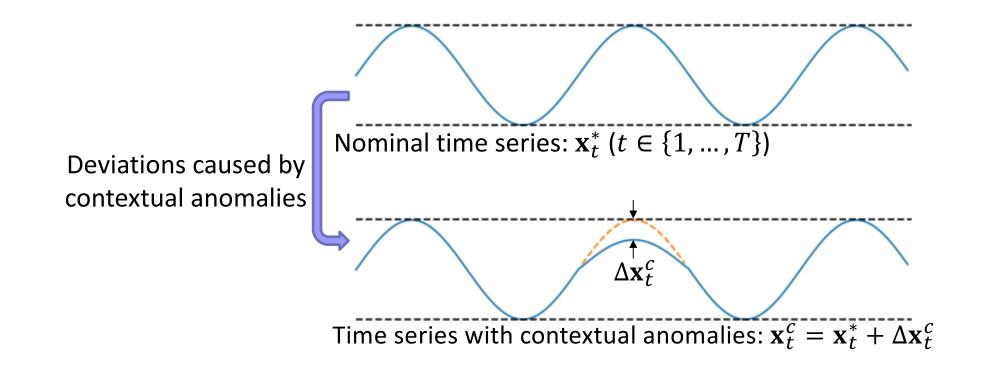
#### Nominal Time Series and Two-stage Deviation







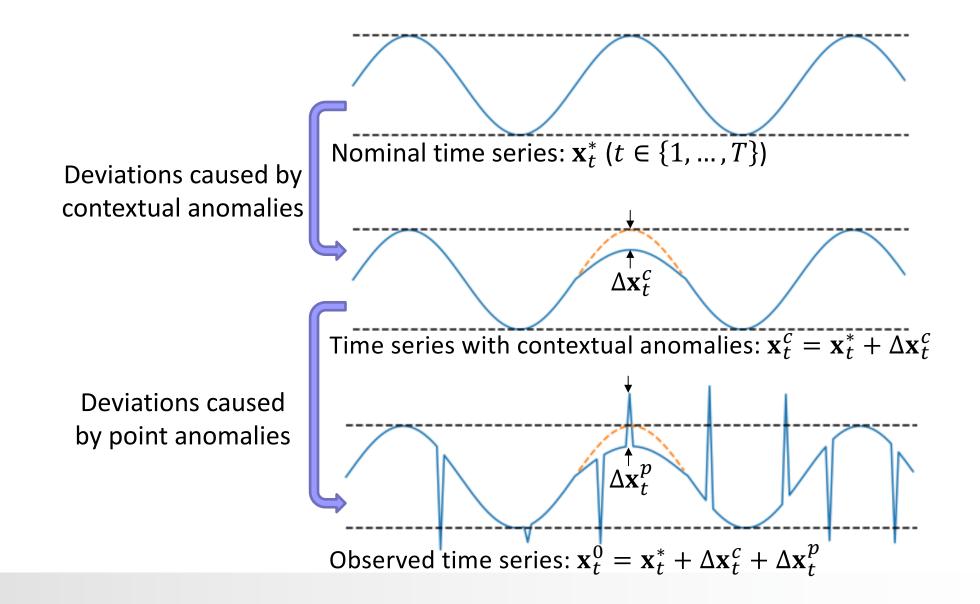
#### **Nominal Time Series and Two-stage Deviation**







#### **Nominal Time Series and Two-stage Deviation**

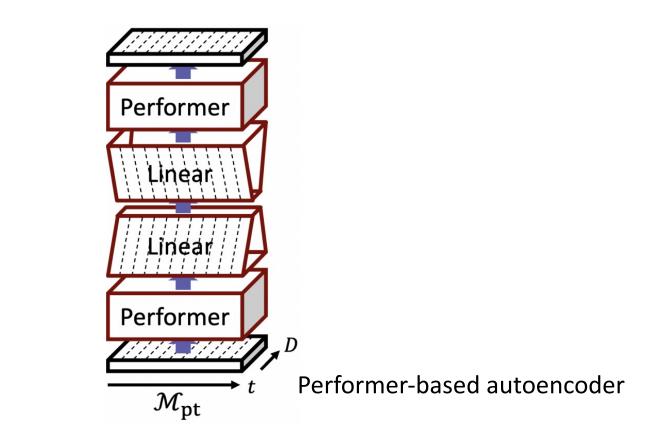


l'lii



# Point-based Reconstruction Models $\mathcal{M}_{pt}$

- $\mathcal{M}_{pt}$  learns the distribution of individual normal time points
- $\mathcal{M}_{pt}$  can only detect point anomalies

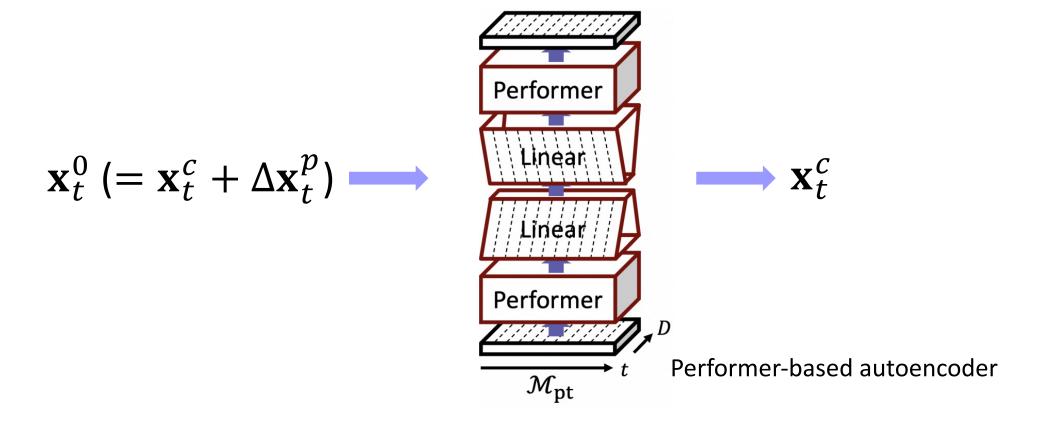






# Point-based Reconstruction Models $\mathcal{M}_{pt}$

- $\mathcal{M}_{pt}$  learns the distribution of individual normal time points
- $\mathcal{M}_{pt}$  can only detect point anomalies

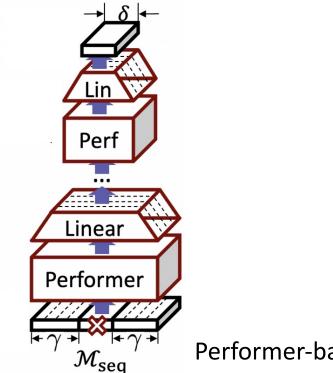






## Sequence-based Reconstruction Models $\mathcal{M}_{seq}$

- $\mathcal{M}_{seq}$  learns the distribution of a sequence of normal time points
- $\mathcal{M}_{seq}$  detects both point and contextual anomalies



Performer-based encoder





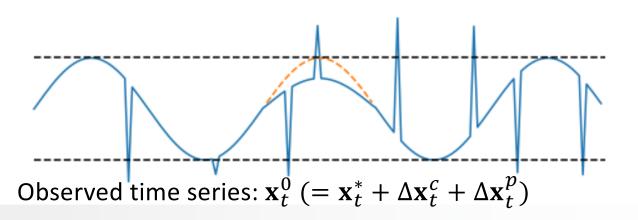
## Sequence-based Reconstruction Models $\mathcal{M}_{seq}$

- $\mathcal{M}_{seq}$  learns the distribution of a sequence of normal time points
- $\mathcal{M}_{seq}$  detects both point and contextual anomalies





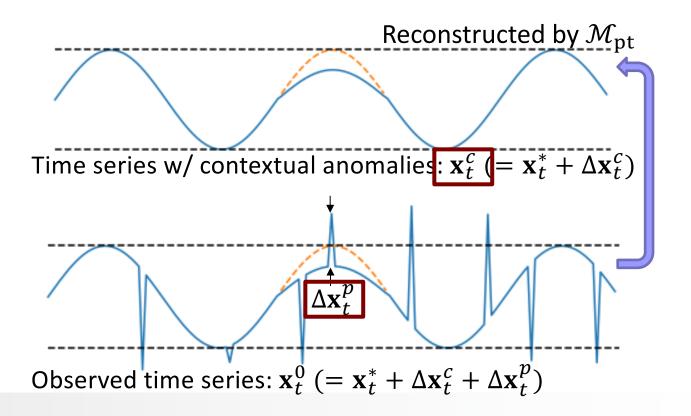
#### Finding $\mathbf{x}_t^*$ and $\mathbf{x}_t^c$ From Observed Time Series $\mathbf{x}_t^0$





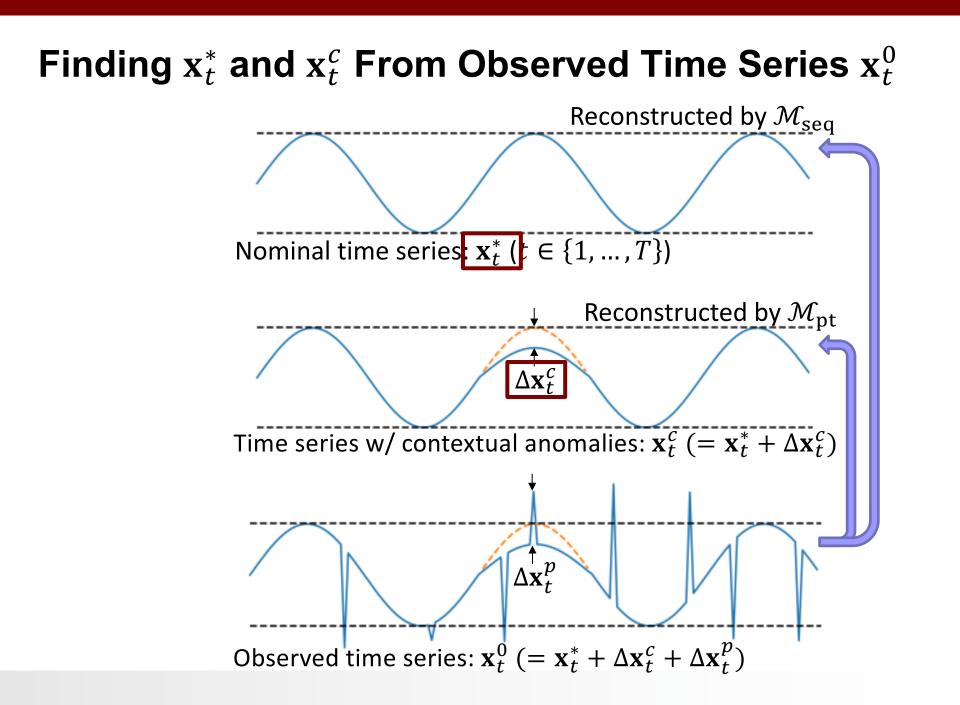


#### Finding $\mathbf{x}_t^*$ and $\mathbf{x}_t^c$ From Observed Time Series $\mathbf{x}_t^0$





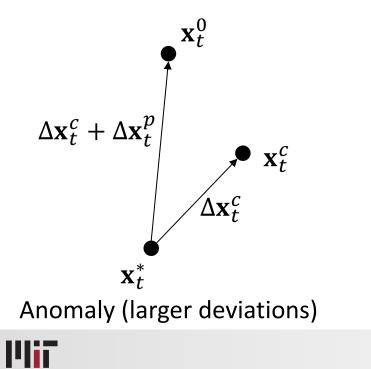






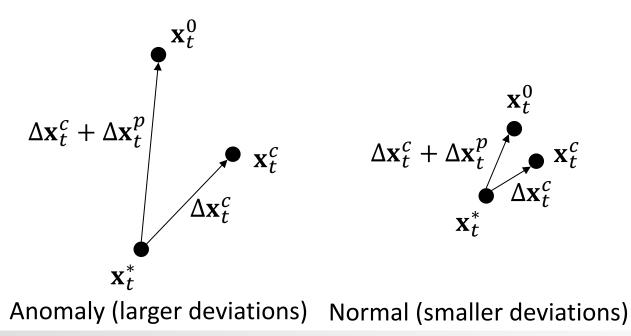


• For anomaly points, it is *more* likely that  $\|\Delta \mathbf{x}_t^c + \Delta \mathbf{x}_t^p\| > \|\Delta \mathbf{x}_t^c\|$ 





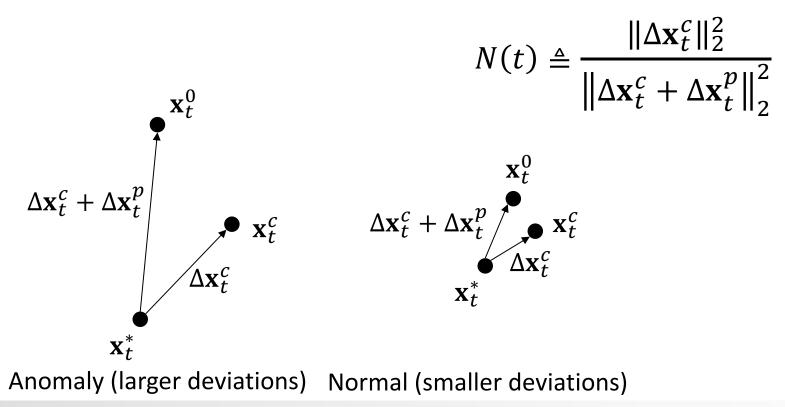
For anomaly points, it is *more* likely that  $\|\Delta \mathbf{x}_t^c + \Delta \mathbf{x}_t^p\| > \|\Delta \mathbf{x}_t^c\|$ For normal points, it is *less* likely that  $\|\Delta \mathbf{x}_t^c + \Delta \mathbf{x}_t^p\| > \|\Delta \mathbf{x}_t^c\|$ 







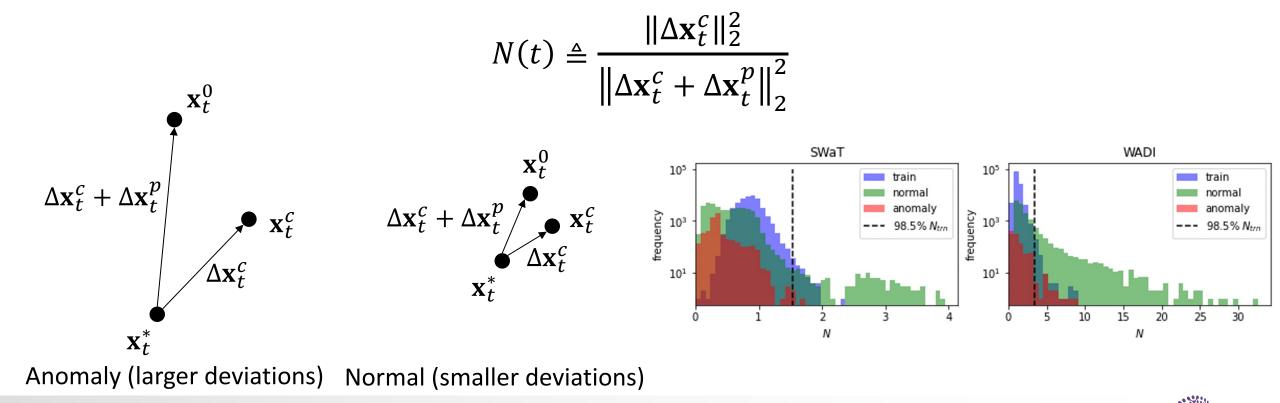
- For anomaly points, it is *more* likely that  $\|\Delta \mathbf{x}_t^c + \Delta \mathbf{x}_t^p\| > \|\Delta \mathbf{x}_t^c\|$
- For normal points, it is *less* likely that  $\|\Delta \mathbf{x}_t^c + \Delta \mathbf{x}_t^p\| > \|\Delta \mathbf{x}_t^c\|$
- Accordingly, the nominality score  $N(\cdot)$  is defined as







- For anomaly points, it is *more* likely that  $\|\Delta \mathbf{x}_t^c + \Delta \mathbf{x}_t^p\| > \|\Delta \mathbf{x}_t^c\|$
- For normal points, it is *less* likely that  $\|\Delta \mathbf{x}_t^c + \Delta \mathbf{x}_t^p\| > \|\Delta \mathbf{x}_t^c\|$
- Accordingly, the nominality score  $N(\cdot)$  is defined as



**NEURAL INFORMATIO** 



# The Induced Anomaly Score $\hat{A}(\cdot)$

• We can use  $N(\cdot)$  to induce any anomaly score  $A(\cdot)$  for calculating  $\hat{A}(\cdot)$ ,

$$\hat{A}(t) \triangleq \sum_{\tau=\max(1,t-d)}^{\min(T,t+d)} A(t;\tau)$$

(a smoothed value of  $A(t; \tau)$ with range controlled by d)

where  $A(t;\tau)$  is the induced anomaly score at t due to  $\tau$ , controlled by gate function  $g_{\theta_N}(\cdot)$ 

$$A(t;\tau) \triangleq A(\tau) \prod_{k=\min(\tau+1,t)}^{\max(t-\mathbb{1}_{t=\tau},\tau-1)} g_{\theta_N}(N(k))$$

 $g_{\theta_N}(\cdot)$  determines how  $N(\cdot)$  will affect the induction





#### **Two Possible Gate Functions**

Soft gate function

$$g_{\theta_N}(N) \triangleq \max(0, 1 - \frac{N}{\theta_N})$$

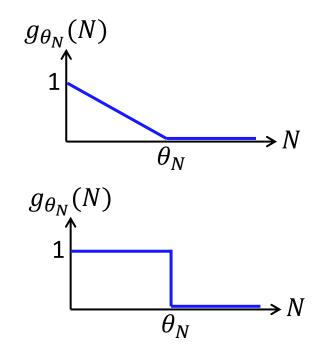
Hard gate function

l'Ilii

$$g_{\theta_N}(N) \triangleq \mathbb{1}_{N < \theta_N}$$

#### **Algorithm 1** NPSR F1\* Evaluation

function NPSR(
$$\mathcal{M}_{pt}, \mathcal{M}_{seq}, \mathbf{X}^{0} = \{\mathbf{x}_{1}^{0}, ..., \mathbf{x}_{T}^{0}\}, \mathbf{y} = \{y_{1}, ..., y_{T}\}, \theta_{N}, d\}$$
  
Construct  $\hat{\mathbf{X}}^{c} = \{\hat{\mathbf{x}}_{1}^{c}, ..., \hat{\mathbf{x}}_{T}^{c}\}$  with  $\hat{\mathbf{x}}_{t}^{c} \leftarrow \mathcal{M}_{pt}(\mathbf{x}_{t}^{0})$   
Construct  $\hat{\mathbf{X}}^{*} = \{\hat{\mathbf{x}}_{1}^{*}, ..., \hat{\mathbf{x}}_{T}^{*}\} \leftarrow \mathcal{M}_{seq}(\mathbf{X}^{0})$   
Construct  $A(\cdot)$  with  $A(t) \leftarrow \|\hat{\mathbf{x}}_{t}^{c} - \mathbf{x}_{t}^{0}\|_{2}^{2}$   
Construct  $N(\cdot)$  with  $N(t) \leftarrow \|\hat{\mathbf{x}}_{t}^{*} - \hat{\mathbf{x}}_{t}^{c}\|_{2}^{2} / \|\hat{\mathbf{x}}_{t}^{*} - \mathbf{x}_{t}^{0}\|_{2}^{2}$   
Construct  $g_{\theta_{N}}(N(\cdot))$  with  $g_{\theta_{N}}(N(t)) \leftarrow \max(0, 1 - N(t)/\theta_{N})$   
Construct  $A(\cdot; \cdot)$  with  $A(t; \tau) \leftarrow A(\tau) \prod_{k=\min(\tau+1,t)}^{\max(t-\mathbb{1}_{t=\tau},\tau-1)} g_{\theta_{N}}(N(k))$   
Construct  $\hat{A}(\cdot)$  with  $\hat{A}(t) \leftarrow \sum_{\tau=\max(1,t-d)}^{\min(T,t+d)} A(t;\tau)$   
return F1\*  $\leftarrow \max_{\theta_{a}} \operatorname{F1}(\hat{\mathbf{y}}(\hat{A}(\cdot), \theta_{a}); \mathbf{y})$ 





#### NPSR Achieves SOTA Results over 14 Baselines and 7 Datasets

Table 2: Best F1 score (F1<sup>\*</sup>) results on several datasets, with bold text denoting the highest and underlined text denoting the second highest value. The deep learning methods are sorted with older methods at the top and newer ones at the bottom.

|                                                         |          |          |                 |                |                               | Algorithm \ Dataset      | SWaT  | WADI  | PSM          | MSL   | SMAP         | SMD   | trimSyn      |
|---------------------------------------------------------|----------|----------|-----------------|----------------|-------------------------------|--------------------------|-------|-------|--------------|-------|--------------|-------|--------------|
| S                                                       |          |          |                 |                | Simple Heuristic [11, 30, 31] | 0.789                    | 0.353 | 0.509 | 0.239        | 0.229 | 0.494        | 0.093 |              |
|                                                         |          |          |                 |                |                               | DAGMM [26]               | 0.750 | 0.121 | 0.483        | 0.199 | 0.333        | 0.238 | 0.326        |
| Table 1: Datasets used in this study before preprocess. |          |          |                 |                |                               | LSTM-VAE [22]            | 0.776 | 0.227 | 0.455        | 0.212 | 0.235        | 0.435 | 0.061        |
|                                                         |          |          |                 |                |                               | MSCRED [24]              | 0.757 | 0.046 | 0.556        | 0.250 | 0.170        | 0.382 | 0.340        |
| aset                                                    | Entities | Dims     | Train #         | Test #         | Anomaly Rate (%)              | OmniAnomaly [9]          | 0.782 | 0.223 | 0.452        | 0.207 | 0.227        | 0.474 | 0.314        |
| άT                                                      | 1        | 51       | 495000          | 449919         | 12.14                         | MAD-GAN [23]             | 0.770 | 0.370 | 0.471        | 0.267 | 0.175        | 0.220 | 0.331        |
| DI                                                      | 1        | 123      | 1209601         | 172801         | 5.71                          | MTAD-GAT [27]            | 0.784 | 0.437 | 0.571        | 0.275 | 0.296        | 0.400 | <u>0.372</u> |
| Μ                                                       | 1        | 25       | 132481          | 87841          | 27.76                         | USAD [28]                | 0.792 | 0.233 | 0.479        | 0.211 | 0.228        | 0.426 | 0.326        |
| SL                                                      | 27       | 55       | 58317           | 73729          | 10.48                         | THOC [18]                | 0.612 | 0.130 | -            | 0.190 | 0.240        | 0.168 | -            |
| AP                                                      | 55       | 25       | 140825          | 444035         | 12.83                         | UAE [11]                 | 0.453 | 0.354 | 0.427        | 0.451 | 0.390        | 0.435 | 0.094        |
| ID<br>Syn                                               | 28       | 38<br>35 | 708405<br>10000 | 708420<br>7680 | 4.16<br>2.34                  | GDN [12]                 | 0.810 | 0.570 | 0.552        | 0.217 | 0.252        | 0.529 | 0.284        |
| Syn                                                     | 1        | 55       | 10000           | 7000           | 2.34                          | GTA [41]                 | 0.761 | 0.531 | 0.542        | 0.218 | 0.231        | 0.351 | 0.256        |
|                                                         |          |          |                 |                |                               | Anomaly Transformer [40] | 0.220 | 0.108 | 0.434        | 0.191 | 0.227        | 0.080 | 0.049        |
|                                                         |          |          |                 |                |                               | TranAD [25]              | 0.669 | 0.415 | 0.649        | 0.251 | 0.247        | 0.310 | 0.282        |
|                                                         |          |          |                 |                | Ours 🗌                        | NPSR (combined)          | -     | -     | -            | 0.261 | 0.511        | 0.227 | -            |
|                                                         |          |          |                 |                |                               | - NPSR                   | 0.839 | 0.642 | <u>0.648</u> | 0.551 | <u>0.505</u> | 0.535 | 0.481        |



Dataset

SWaT WADI PSM MSL SMAP SMD trimSyn



#### **Ablation Study**

Table 3: AUC and F1<sup>\*</sup> for different methods and datasets, with bold text denoting the highest and underlined text denoting the second highest value. The mean ( $\mu_d$ ) and standard deviation ( $\sigma_d$ ) of the performance metrics evaluated across d = 1, 2, 4, 8, 16, 32, 64, 128, 256 are shown.

|                                                     | Dataset                                                                            |                    | SWaT           |                       | WADI                  |                       | PSM                |                       | MSL                                                      |                       | SMAP                  |                       | SMD                                                      |                       | trimSyn            |                       |
|-----------------------------------------------------|------------------------------------------------------------------------------------|--------------------|----------------|-----------------------|-----------------------|-----------------------|--------------------|-----------------------|----------------------------------------------------------|-----------------------|-----------------------|-----------------------|----------------------------------------------------------|-----------------------|--------------------|-----------------------|
|                                                     | Method                                                                             |                    | AUC            | F1*                   | AUC                   | F1*                   | AUC                | F1*                   | AUC                                                      | F1*                   | AUC                   | F1*                   | AUC                                                      | F1*                   | AUC                | F1*                   |
| point-based $A(\cdot)$                              | $\mathcal{M}_{pt}$ ( $\ \hat{\mathbf{x}}_t^c - \mathbf{x}_t^0\ _2^2$ )             |                    | 0.908          | 0.839                 | 0.819                 | 0.629                 | <u>0.790</u>       | 0.626                 | 0.640                                                    | 0.366                 | 0.647                 | 0.329                 | 0.820                                                    | 0.485                 | 0.721              | 0.100                 |
| seq-based $A(\cdot)$                                | $\mathfrak{M}_{seq} \left( \  \hat{\mathbf{x}}_t^* - \mathbf{x}_t^0 \ _2^2  ight)$ |                    | 0.899          | 0.755                 | 0.843                 | 0.559                 | 0.766              | 0.576                 | 0.621                                                    | 0.351                 | 0.611                 | 0.292                 | 0.820                                                    | 0.482                 | 0.832              | <u>0.345</u>          |
|                                                     |                                                                                    | $\mu_d \ \sigma_d$ |                | 0.813<br>0.034        | 0.827<br>0.007        | $\frac{0.630}{0.037}$ | 0.775<br>0.023     | 0.621<br>0.020        | $\begin{array}{c} \underline{0.708}\\ 0.032 \end{array}$ | 0.451<br>0.038        | <b>0.665</b> 0.010    |                       | $\begin{array}{c} \underline{0.835}\\ 0.025 \end{array}$ | <u>0.492</u><br>0.052 | 0.785<br>0.037     | 0.144<br>0.021        |
| point + seq $\hat{A}(\cdot)$<br>with different gate | $\mathcal{M}_{pt}$ + Hard (11)<br>( $\theta_N = 98.5\% N_{trn}$ )                  | $\mu_d \ \sigma_d$ |                | 0.820<br>0.024        | $\frac{0.844}{0.007}$ | 0.625<br>0.023        |                    | 0.624<br>0.015        | <b>0.718</b> 0.041                                       | <b>0.467</b><br>0.051 | $\frac{0.659}{0.012}$ |                       | 0.833<br>0.024                                           | 0.495<br>0.050        |                    |                       |
| functions and $\theta_N$                            | P <sup>c</sup>                                                                     | $\mu_d \ \sigma_d$ | 0.909<br>0.000 | <u>0.837</u><br>0.001 |                       | <b>0.639</b><br>0.008 | <b>0.804</b> 0.005 | <b>0.636</b><br>0.004 | 0.698<br>0.031                                           | <u>0.465</u><br>0.061 | 0.656<br>0.005        | <u>0.388</u><br>0.039 | <b>0.840</b> 0.003                                       | <b>0.525</b> 0.011    | <b>0.862</b> 0.063 | <b>0.434</b><br>0.099 |





#### **Ablation Study**

Table 3: AUC and F1<sup>\*</sup> for different methods and datasets, with bold text denoting the highest and underlined text denoting the second highest value. The mean ( $\mu_d$ ) and standard deviation ( $\sigma_d$ ) of the performance metrics evaluated across d = 1, 2, 4, 8, 16, 32, 64, 128, 256 are shown.

|                                                     | Dataset                                                                  |                    | SWaT               |                       | WADI                  |                       | PSM                |                       | MSL                |                       | SMAP                  |       | SMD                                                      |                       | trimSyn            |                       |
|-----------------------------------------------------|--------------------------------------------------------------------------|--------------------|--------------------|-----------------------|-----------------------|-----------------------|--------------------|-----------------------|--------------------|-----------------------|-----------------------|-------|----------------------------------------------------------|-----------------------|--------------------|-----------------------|
|                                                     | Method                                                                   |                    | AUC                | $F1^*$                | AUC                   | F1*                   | AUC                | F1*                   | AUC                | F1*                   | AUC                   | F1*   | AUC                                                      | F1*                   | AUC                | F1*                   |
| point-based $A(\cdot)$                              | $\mathfrak{M}_{pt}$ ( $\ \hat{\mathbf{x}}_t^c - \mathbf{x}_t^0\ _2^2$ )  |                    | 0.908              | 0.839                 | 0.819                 | 0.629                 | <u>0.790</u>       | <u>0.626</u>          | 0.640              | 0.366                 | 0.647                 | 0.329 | 0.820                                                    | 0.485                 | 0.721              | 0.100                 |
| seq-based $A(\cdot)$                                | $\mathfrak{M}_{seq}$ ( $\ \hat{\mathbf{x}}_t^* - \mathbf{x}_t^0\ _2^2$ ) |                    | 0.899              | 0.755                 | 0.843                 | 0.559                 | 0.766              | 0.576                 | 0.621              | 0.351                 | 0.611                 | 0.292 | 0.820                                                    | 0.482                 | <u>0.832</u>       | <u>0.345</u>          |
|                                                     | $\mathcal{M}_{pt} + \text{Hard (11)} \\ (\theta_N = \infty)$             | $\mu_d \ \sigma_d$ | <b>0.912</b> 0.005 | 0.813<br>0.034        | 0.827<br>0.007        | $\frac{0.630}{0.037}$ | 0.775<br>0.023     | 0.621<br>0.020        | 0.708<br>0.032     | 0.451<br>0.038        | <b>0.665</b><br>0.010 |       | $\begin{array}{c} \underline{0.835}\\ 0.025 \end{array}$ | <u>0.492</u><br>0.052 | 0.785<br>0.037     | 0.144<br>0.021        |
| point + seq $\hat{A}(\cdot)$<br>with different gate | $\mathcal{M}_{pt}$ + Hard (11)<br>( $\theta_N = 98.5\% N_{trn}$ )        | $\mu_d \ \sigma_d$ | <b>0.912</b> 0.005 | 0.820<br>0.024        | $\frac{0.844}{0.007}$ | 0.625<br>0.023        | 0.779<br>0.017     | 0.624<br>0.015        | <b>0.718</b> 0.041 | <b>0.467</b><br>0.051 | <u>0.659</u><br>0.012 | I     | 0.833<br>0.024                                           | 0.495<br>0.050        |                    |                       |
| functions and $	heta_N$                             | $\mathcal{M}_{pt} + \text{Soft (8)} \\ (\theta_N = 98.5\% N_{trn})$      | $\mu_d \ \sigma_d$ | 0.909<br>0.000     | $\frac{0.837}{0.001}$ | <b>0.856</b> 0.011    | <b>0.639</b><br>0.008 | <b>0.804</b> 0.005 | <b>0.636</b><br>0.004 | 0.698<br>0.031     | <u>0.465</u><br>0.061 | 0.656<br>0.005        |       | <b>0.840</b> 0.003                                       | <b>0.525</b> 0.011    | <b>0.862</b> 0.063 | <b>0.434</b><br>0.099 |





#### **Detection Trade-off Between Point and Contextual Anomalies**

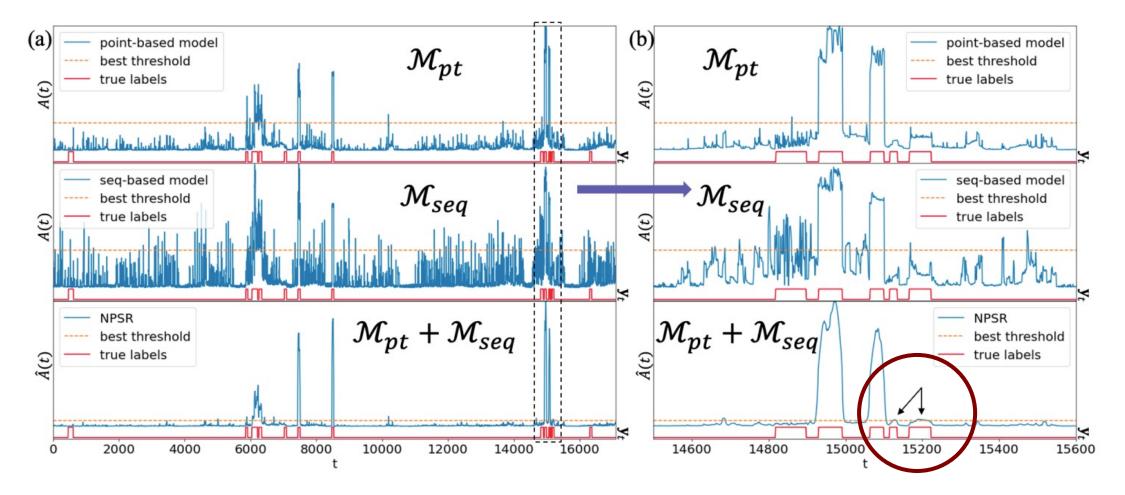


Figure 5: (a) Anomaly scores using  $\mathcal{M}_{pt}$ ,  $\mathcal{M}_{seq}$  and NPSR (soft gate function,  $\theta_N = 99.85\% N_{trn}$ , and d = 16), and the true labels of the WADI dataset. (b) Magnification for  $t \in \{14500, ..., 15600\}$ .



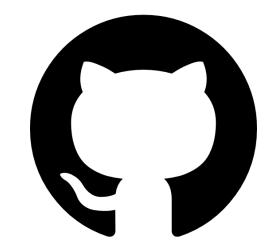


## Conclusion

- State-of-the-art unsupervised learning framework for time series anomaly detection
- Provable superiority of the induced anomaly score  $\hat{A}(\cdot)$



https://chihyulai.com/ chihyul@mit.edu



https://github.com/andrewlai61616/NPSR



