i

s,

NEURAL INFORMATION

PROCESSING SYSTEMS

AutoGO:

Automated Computation
Graph Optimization for
Neural Network Evolution

Mohammad Salameh!, Keith G. Mills'2, Negar Hassanpour!, Fred X. Han',
Shuting Zhang3, Wei Lu'!, Shangling Jui3, Chunhua Zhous, Fengyu Sun3 and Di Niu'!

"Huawei Technologies Canada Co., Ltd.
2Dept. ECE, University of Alberta
SHuawei Kirin Solution, Shanghai, China

https://github.com/Ascend-Research/AutoGO

-]
0 _00 00
200 88
“.. 208 &

[X

i'=z..i :i;i'

0 ...-1'-=- HUAWE]

UNIVERSITY

3 OF ALBERTA

Background

Neural Architecture Search (NAS) automates the DNN design.
Given a task, dataset and search space, we find architectures that obtain
high accuracy and hardware-friendliness (e.g., FLOPs, latency, etc.)

» Search Space

» Macro Structure: ResNets, MobileNets, etc.
» Micro Structure: Cell-based NAS-Bench-101 or 201.

» Problems? The search space is predefined.
» By expert knowledge/heuristics
» Bounds on performance limits.
» May not be hardware friendly.

We cannot assume this cell
Is optimal at all these resolutions

00 00 00
Macro
Structure
Micro
Structure

‘ l

o (00O
Conv.
block 1x1 5x5 77 3x3 Sep.
Ocks Conv Conv Conv Conv Conv

conv3x3-bn-relu
conv3x3-bn-relu

|

64x64x16 | | 32x32x32 | | 16x16x64

|

HxWxC

Our Contribution: AutoGO

Framework for optimizing networks for performance
and hardware-friendliness.
« Adjust low-level Computational Graphs.

« Data-driven mining of computational segments from B—’[
benchmarks.
« Tests on popular CV tasks like classification,

segmentation, etc.

« Applicable in deployment scenarios — we use it to
optimize power and latency on proprietary networks

for Huawei NPUSs.

Input architecture

Building a Segment Database

Computational Graphs:

» DAGs with primitive operation nodes (e.g., Conv, Add, ReLU).
» Encode spatially-sensitive features like /0O HWC.

Data Driven Extraction:

» Use topological sort to convert graphs into sequences.

» Apply Byte-Pair Encoding (BPE), tokenization from NLP.

» This is a form of Frequent Subgraph Mining, used to build database.

Segments:
» CG subgraphs extracted from existing NAS Benchmarks.
» Can vary in #nodes, #edges, topology, inputs, outputs, etc.

> Unit of mutation in AutoGO.

Input
Computational
Graph @ !

Convert to O O
Sequence @
Segment

o ofe
Byte Pair

Encoding @

Segments Vocab/Database
Extract segments O
and build database | @ ©) Q
. 100 e

Segment 5 @
Computational ol / max

Graphs \ oy pool \

3x3 >

PSC and Mutation-driven search

PSC:
» 3 components of an architecture we mutate.
» Segment S, to replace with S’ from the database
» Predecessor P
» suCcessor C
» Any CG consists of many P, S, C permutations.
PSC Predictor:
» Designed for Segment mutation-based NAS.
» Aware and sensitive to the mutation context.
» GNN encodes P, S and C subgraphs separately, so
changes in performance for mutant architectures are
attributed to mutating S -> S

» Use an MILP to ensure network functionality.

&
<«

S

Mutate j

sl

Segment
input
architecture

Train Predictor
on PSC
samples

Usage:
Evaluate
Predicted
Performance

Results

Image Classification

Image Classification,
Semantic Segmentation
And Pose Estimation

Super Resolution

Family Method ImageNet Delta Acc FLOPs Delta FLOPs
Top-1 (Giga)
Baseline 74.02% -- 6.29 --
ResNet-50 AutoGO Arch 1 75.34% +1.32% 6.71 +6.68%
AutoGO Arch 2 75.66% +1.64% 5.88 -6.52%
Baseline 75.09% -- 13.76 --
ResNet-101 AutoGO Arch 1 76.56% +1.47% 13.66 -0.73%
AutoGO Arch 2 75.69% +0.60% 13.35 -2.98%
Family Method ImageNet Delta Acc Cityscapes Delta mioU PCK Delta
Top-1 mloU FLOPs
Baseline 74.18% -- 65.36% -- 85.92% --
VGG16
AutoGO 74.91% +0.73% 66.91% +1.55% 85.99% -21.00%
Family Method Setb5 Setl4 BSD100 Urbanl00 Mangal09 Delta
PSNR PSNR PSNR PSNR PSNR FLOPs
Baseline 36.89 32.57 31.39 29.14 36.08 --
AutoGO Arch 1 38.01 33.62 32.18 31.56 38.49 -16.31%
EDSR
AutoGO Arch 2 37.97 33.55 32.16 31.53 38.47 -21.99%
AutoGO Arch 3 38.01 33.58 32.16 31.46 38.44 -25.53%

	Slide 1: AutoGO: Automated Computation Graph Optimization for Neural Network Evolution
	Slide 2
	Slide 3
	Slide 4: Building a Segment Database
	Slide 5: PSC and Mutation-driven search
	Slide 6

