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Background

Neural Architecture Search (NAS) automates the DNN design.
Given a task, dataset and search space, we find architectures that obtain
high accuracy and hardware-friendliness (e.g., FLOPs, latency, etc.)

» Search Space

» Macro Structure: ResNets, MobileNets, etc.
» Micro Structure: Cell-based NAS-Bench-101 or 201.

» Problems? The search space is predefined.
» By expert knowledge/heuristics
» Bounds on performance limits.
» May not be hardware friendly.

We cannot assume this cell
Is optimal at all these resolutions
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Our Contribution: AutoGO

Framework for optimizing networks for performance
and hardware-friendliness.
« Adjust low-level Computational Graphs.

« Data-driven mining of computational segments from B—’[
benchmarks.
« Tests on popular CV tasks like classification,

segmentation, etc.

« Applicable in deployment scenarios — we use it to
optimize power and latency on proprietary networks

for Huawei NPUSs.
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Building a Segment Database

Computational Graphs:

» DAGs with primitive operation nodes (e.g., Conv, Add, ReLU).
» Encode spatially-sensitive features like /0O HWC.

Data Driven Extraction:

» Use topological sort to convert graphs into sequences.

» Apply Byte-Pair Encoding (BPE), tokenization from NLP.

» This is a form of Frequent Subgraph Mining, used to build database.

Segments:
» CG subgraphs extracted from existing NAS Benchmarks.
» Can vary in #nodes, #edges, topology, inputs, outputs, etc.

> Unit of mutation in AutoGO.
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PSC and Mutation-driven search

PSC:
» 3 components of an architecture we mutate.
» Segment S, to replace with S’ from the database
» Predecessor P
» suCcessor C
» Any CG consists of many P, S, C permutations.
PSC Predictor:
» Designed for Segment mutation-based NAS.
» Aware and sensitive to the mutation context.
» GNN encodes P, S and C subgraphs separately, so
changes in performance for mutant architectures are
attributed to mutating S -> S

» Use an MILP to ensure network functionality.
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Results

Image Classification

Image Classification,
Semantic Segmentation
And Pose Estimation

Super Resolution

Family Method ImageNet Delta Acc FLOPs Delta FLOPs
Top-1 (Giga)
Baseline 74.02% -- 6.29 --
ResNet-50 AutoGO Arch 1 75.34% +1.32% 6.71 +6.68%
AutoGO Arch 2 75.66% +1.64% 5.88 -6.52%
Baseline 75.09% -- 13.76 --
ResNet-101 AutoGO Arch 1 76.56% +1.47% 13.66 -0.73%
AutoGO Arch 2 75.69% +0.60% 13.35 -2.98%
Family Method ImageNet Delta Acc Cityscapes Delta mioU PCK Delta
Top-1 mloU FLOPs
Baseline 74.18% -- 65.36% -- 85.92% --
VGG16
AutoGO 74.91% +0.73% 66.91% +1.55% 85.99% -21.00%
Family Method Setb5 Setl4 BSD100 Urbanl00 Mangal09 Delta
PSNR PSNR PSNR PSNR PSNR FLOPs
Baseline 36.89 32.57 31.39 29.14 36.08 --
AutoGO Arch 1 38.01 33.62 32.18 31.56 38.49 -16.31%
EDSR
AutoGO Arch 2 37.97 33.55 32.16 31.53 38.47 -21.99%
AutoGO Arch 3 38.01 33.58 32.16 31.46 38.44 -25.53%
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