

NeurIPS 2023

Counterfactual-Augmented Importance Sampling for Semi-Offline Policy Evaluation

Shengpu Tang, Jenna Wiens Computer Science & Engineering University of Michigan

This work is funded by NIH-NLM.

Evaluating RL Policies in Healthcare

High-stakes environment

- Potentially unsafe to patients
- Disruptive to human users and clinical workflows

Wiens et al. "Do no harm: a roadmap for responsible machine learning for health care." Nature Medicine 2019.

Evaluating RL Policies in Healthcare

Observational dataset

- Limited by available data
- May not reflect distribution shift induced by new policies

High-stakes environment

- Potentially unsafe to patients
- Disruptive to human users and clinical workflows

Wiens et al. "Do no harm: a roadmap for responsible machine learning for health care." *Nature Medicine* 2019. Gottesman et al. "Guidelines for reinforcement learning in healthcare." *Nature Medicine* 2019.

Counterfactual-Augmented Importance Sampling for Semi-Offline Policy Evaluation Shengpu Tang, Jenna Wiens. NeurIPS 2023.

Our Contributions

We propose a **semi-offline evaluation scheme** that combines observational data with **human annotations** of counterfactuals

Observational data contains factual trajectories

Query domain experts for annotations of the counterfactual trajectories

Augmenting Factual Data with Counterfactuals

Intuition: as if we collected **more data**

How do we use both **counterfactual annotations** and **observational data** to evaluate policies?

> "Simply adding annotations as new data" ... is not theoretically valid.

Key Idea: Augmenting Standard IS

where
$$ho = rac{\pi_e(a|s)}{\pi_b(a|s)}$$

Key Idea: Reweighted IS with Counterfactuals

where
$$ho^{ ilde{a}}=rac{\pi_e(ilde{a}|s)}{\pi_b(ilde{a}|s)}$$

where
$$w^a + \sum_{\tilde{a} \in \mathcal{A} \smallsetminus \{a\}} w^{\tilde{a}} = 1$$

Theoretical Insights

$$\hat{v}^{\text{C-IS}} = w^a \rho^a r + \sum_{\tilde{a} \in \mathcal{A} \setminus \{a\}} w^{\tilde{a}} \rho^{\tilde{a}} g^{\tilde{a}}$$

Intuition: as if we collected more data

- More data for regions that lack support \rightarrow reduce bias
- Even more data for regions with support \rightarrow reduce variance

C-IS can achieve lower bias and lower variance than IS

Experimental Results

Experiments conducted on the sepsis simulator

Based on the sepsis simulator introduced by Oberst & Sontag, ICML 2019.

Simulate collection of

- Factual dataset
- Counterfactual annotations

to evaluate multiple treatment policies.

Compare

- Standard approach (PDIS)
- Proposed approach (C-PDIS)

Metrics

- ↓ Evaluation error (RMSE)
- ↑ Ranking ability (Spearman correlation)

with respect to ground-truth policy performance

Experimental Results

Estimator	\downarrow Evaluation Error	↑ Ranking Ability
Baseline	0.113	0.596
Proposed	0.013	0.995

Our proposed approach **outperforms** the baseline method (without annotations) in terms of all metrics.

(under the assumption that annotations are "good")

Experimental Results

Estimator	\downarrow Evaluation Error	\uparrow Ranking Ability
Baseline	0.113	0.596
Proposed	0.013	0.995
Proposed (biased)	0.028	0.979
Proposed (noisy)	0.029	0.977
Proposed (missing)	0.067	0.823

Our proposed approach **remains competitive** to the baseline method even with imperfect annotations (biased, noisy, missing).

Counterfactual-Augmented Importance Sampling for Semi-Offline Policy Evaluation Shengpu Tang, Jenna Wiens. NeurIPS 2023.

Takeaways

We propose a **new estimator** for **semi-offline evaluation** that combines observational data with **human annotations** of counterfactuals

$$\hat{v}^{\text{C-IS}} = w^a \rho^a r + \sum_{\tilde{a} \in \mathcal{A} \setminus \{a\}} w^{\tilde{a}} \rho^{\tilde{a}} g^{\tilde{a}}$$

- Theoretical insights show potential to *reduce both bias and variance*
- Experiments demonstrate robustness to *bias, noise, and missingness* of annotations