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A Paradigm Shift from Closed-world to the Open-world

Closed-world ML: Open-world ML:
Handle data with the Handle data with both

known classes novel and known classes

|

(Figures are powered by GPT-4V)
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Open-world Semi-Supervised Learning

-------------------

Labeled Unlabeled

(Known) (Known and Novel)

Goal: correctly classity known and cluster novel classes.
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This research area starts to gain attention!
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An Open Research Question

--------------------------------------

---------------------------------------

Unlabeled Labeled Unlabeled

(Novel) (Known) (Known and Novel)

“what is the role of the label information in shaping representations for both
known and novel classes?”
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An Intuitive Example

Starting Point: All Unlabeled Samples
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An Intuitive Example

We label the first two images as "traftic lights™...
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An Intuitive Example
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Known Class

Question: Will other “traffic light” samples get closer to each other?
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An Intuitive Example

(Strong relationship)
Question: Will other “green” samples get closer to “red” samples?
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An Intuitive Example

(Weak relationship)
Question: Will unrelated novel class be affected?
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An Intuitive Example

A formal understanding is needed!
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Methodology
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Augmentation Graph

---------

Node: Augmented Images.

Edge Weight: Probability of two images are considered as positive pair.
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Label Perturbation '
Adding labels changes the graph structure. 14

-----------------------------------------------------------

-------

----------------------------------------------------------

Unlabeled Augmentation Graph
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Label Perturbation '
Adding labels perturbs the graph structure. 15

Add labels

-----------------------------------------------------------
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Unlabeled Augmentation Graph Augmentation Graph with labels
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Label Perturbation '
Adding labels changes the graph structure. 16

Add labels

How do representations change?
How do cluster results change?

== = = = = =

Unlabeled Augmentation Graph Augmentation Graph with labels
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Contrastive Learning learns the augmentation graph.

Learning Goal Make Close Keep away
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Contrastive loss derived from Matrix Factorization 18
Lone(F,A) = ||n0rmalize(A) — FFTHi,

Spectral Open-world Representation Learning (SORL)

----------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------

Make Close Keep away
Positive Pairs Negative Pairs

See more details in paper!
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SORL has the closed-form solution.

-----------------------------------------------------------------------------------

----------------------------------------------------------------------------------

----------------------------------------------------------------------------------------------------------------------------------

SVD Decomposition Choose Top-k and Scaling
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The closed-form solution is known!

--------------------------------------------------------------------------------------------

: 2
Lone(F,A) = ||n0rma,lzze(A) — FFTHF
| Nntimal CQAaliitiAan /CALAvi VVAiin~s ANMivalnr ThAanvram)

Good! We can analyze the feature space with spectral
analysis of the adjacency matrix!

A: o VT: V1 Vg Uz wmn UN F = fxs)

When and How Does Known Class Help Discover Unknown Ones? [SSLL, ICML 23]
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Main Intuition of the Theorem

Cluster Performance Gain by adding labels for Class c.

Connection from class c to the labeled data.
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Main Theorem (Case Study)

Connection from class c to the labeled data.

([‘nc i %) - 2(1

|7TC|

)(Eier Ejer.2; 2; — Eicr Ei¢r 2; 2; ).

Intra-class similarity T Inter-class similarity

connection >> (intra-sim - )
(very large) (...)

Conclusion: Unlabeled traffic lights
will be better clustered!
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Main Theorem (Case Study)

Connection from class c to the labeled data.

([‘nc i %) - 2(1

|7TC|

)(Eier Ejer.2; 2; — Eicr Ei¢r 2; 2; ).

Intra-class similarity T Inter-class similarity

connection > (intra-sim - )
(large) (Low)

Conclusion: Green and red apple will be
close to each other!
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Main Theorem (Case Study)

Connection from class c to the labeled data.

([wc i %) - 2(1

|7rC|

)( ‘:ieﬂ'c 4:.7.67"cz;rzj — I €j¢ﬂ-cz,;ij )’

Intra-class similarity T Inter-class similarity

connection < (intra-sim - )
(Low) (High)

Conclusion: Add labels may not be
beneficial to flower class.
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A Toy Example
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See more details in paper!

A Graph-Theoretic Framework for Understanding Open-world Semi-Supervised Learning [SSL, NeurlPS 23]



Experiment
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Model Dataset (ClFAR-1 0/1 00)

: 1 Separate all classes into 50% known and 50% novel
%@@"%ﬁ : 1 2. Divide known-class samples into 50% labeled and
50% unlabeled.
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SORL is also appealing for practical usage!
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Thank you!

Our code is available at
https://github.com/deeplearning-wisc/SORL.



https://github.com/deeplearning-wisc/SORL

