

A Graph-Theoretic Framework for Understanding Open-World Semi-Supervised Learning

NeurIPS 2023 (Spotlight)

Yiyou Sun UW-Madison

Zhenmei Shi UW-Madison

Yixuan Li UW-Madison

A Paradigm Shift from Closed-world to the Open-world

Closed-world ML:
Handle data with the
known classes

Open-world ML:
Handle data with both
novel and known classes

(Figures are powered by GPT-4V)

Open-world Semi-Supervised Learning

Goal: correctly classify known and cluster novel classes.

This research area starts to gain attention!

An Open Research Question

"what is the role of the label information in shaping representations for both known and novel classes?"

Starting Point: All Unlabeled Samples

We label the first two images as "traffic lights"...

Question: Will other "traffic light" samples get closer to each other?

Question: Will other "green" samples get closer to "red" samples?

Question: Will unrelated novel class be affected?

A formal understanding is needed!

Methodology

Augmentation Graph

Node: Augmented Images.

Edge Weight: Probability of two images are considered as positive pair.

Label Perturbation

Adding labels changes the graph structure.

Unlabeled Augmentation Graph

Label Perturbation

Adding labels perturbs the graph structure.

Adding labels changes the graph structure.

How do representations change? How do cluster results change?

Contrastive Learning learns the augmentation graph.

Spectral Open-world Representation Learning (SORL)

Contrastive loss derived from Matrix Factorization

$$\mathcal{L}_{ ext{mf}}(F,A) = ig\| normalize(A) - FF^ op ig\|_F^2$$

$$\mathcal{L}_{sort}(f) \triangleq -2\alpha \mathcal{L}_1(f) - 2\beta \mathcal{L}_2(f) + \alpha^2 \mathcal{L}_3(f) + 2\alpha \beta \mathcal{L}_4(f) + \beta^2 \mathcal{L}_5(f)$$

Make Close
Positive Pairs

Keep away

Negative Pairs

See more details in paper!

SORL has the closed-form solution.

$$\mathcal{L}_{\mathrm{mf}}(F,A) = \left\| normalize(A) - FF^\top \right\|_F^2$$

$$\downarrow \text{Optimal Solution } \text{(Eckart-Young-Mirsky Theorem)}$$

$$SVD \text{ Decomposition} \qquad \text{Choose Top-k and Scaling}$$

$$V^\top = \begin{bmatrix} v_1 v_2 v_3 \dots v_N \\ v_1 v_2 v_3 \dots v_N \end{bmatrix} \qquad F = \begin{bmatrix} f(x_1) \\ f(x_2) \\ f(x_3) \\ \vdots \\ f(x_N) \end{bmatrix}$$

The closed-form solution is known!

$$\mathcal{L}_{ ext{mf}}(F,A) = ig\| normalize(A) - FF^ op ig\|_F^2$$

Good! We can analyze the feature space with **spectral** analysis of the adjacency matrix!

$$A = egin{bmatrix} V^ op = egin{bmatrix} v_1 v_2 v_3 \dots v_N \ \vdots \ \vdots \ f(x_N) \end{bmatrix}$$

Theory

Main Intuition of the Theorem

Cluster Performance Gain by adding labels for Class c.

Connection from class c to the labeled data.

$$\Delta_{\pi_c}(\delta) = (\mathbf{l}_{\pi_c} - \frac{1}{N}) - 2(1 - \frac{|\pi_c|}{N}) (\mathbb{E}_{i \in \pi_c} \mathbb{E}_{j \in \pi_c} \mathbf{z}_i^{\top} \mathbf{z}_j - \mathbb{E}_{i \in \pi_c} \mathbb{E}_{j \notin \pi_c} \mathbf{z}_i^{\top} \mathbf{z}_j).$$

$$\underline{Intra-class\ similarity} \uparrow \qquad \underline{Inter-class\ similarity}$$

Main Theorem (Case Study)

Connection from class c to the labeled data.

$$\Delta_{\pi_c}(\delta) = \underbrace{(\mathfrak{l}_{\pi_c} - \frac{1}{N})}_{Intra-class\ similarity} - 2(1 - \frac{|\pi_c|}{N})(\underbrace{\mathbb{E}_{i \in \pi_c} \mathbb{E}_{j \in \pi_c} \mathbf{z}_i^{\top} \mathbf{z}_j}_{Inter-class\ similarity} - \underbrace{\mathbb{E}_{i \in \pi_c} \mathbb{E}_{j \notin \pi_c} \mathbf{z}_i^{\top} \mathbf{z}_j}_{Inter-class\ similarity}).$$

Case Study 1 (unlabeled data from known class):

Conclusion: Unlabeled traffic lights will be better clustered!

Main Theorem (Case Study)

Connection from class c to the labeled data.

$$\Delta_{\pi_c}(\delta) = \frac{(\mathbf{I}_{\pi_c} - \frac{1}{N})}{-2(1 - \frac{|\pi_c|}{N})(\mathbb{E}_{i \in \pi_c} \mathbb{E}_{j \in \pi_c} \mathbf{z}_i^{\top} \mathbf{z}_j) - \mathbb{E}_{i \in \pi_c} \mathbb{E}_{j \notin \pi_c} \mathbf{z}_i^{\top} \mathbf{z}_j)}.$$

$$\underline{Intra-class\ similarity} \uparrow \qquad \qquad \uparrow \underline{Inter-class\ similarity}$$

Case Study 2 (novel class with strong connection):

Conclusion: Green and red apple will be close to each other!

Main Theorem (Case Study)

Connection from class c to the labeled data.

$$\Delta_{\pi_c}(\delta) = (\mathbf{I}_{\pi_c} - \frac{1}{N}) - 2(1 - \frac{|\pi_c|}{N})(\mathbb{E}_{i \in \pi_c} \mathbb{E}_{j \in \pi_c} \mathbf{z}_i^{\top} \mathbf{z}_j) - \mathbb{E}_{i \in \pi_c} \mathbb{E}_{j \notin \pi_c} \mathbf{z}_i^{\top} \mathbf{z}_j).$$

$$\underline{Intra-class\ similarity} \uparrow \underline{Inter-class\ similarity}$$

Case Study 3 (novel class with weak connection):

Conclusion: Add labels may not be beneficial to flower class.

A Toy Example

See more details in paper!

Experiment

Set Up

Dataset (CIFAR-10/100)

- 1. Separate all classes into 50% known and 50% novel.
- 2. Divide known-class samples into 50% labeled and 50% unlabeled.

CIFAR-10 (Unlabeled Data)

CIFAR-10 (Labeled Data)

airplane
automobile
bird
cat

dog
frog
horse
ship

SORL is also appealing for practical usage!

Thank you!

Our code is available at https://github.com/deeplearning-wisc/SORL.