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1.     Introduction

Pseudo Labeling (PL) is a popular self-supervised learning approaches to tackle the label sparsity 
problem by iterative self-labeling. However, there is a trade-off between the benefit of PL and the 
effect of mislabeled samples.
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Fig.1 . Noise of PL
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In a two-layer graph neural network, false 
information can influence their 2-hop 
neighbors, and accumulate during iterations.
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Challenges of PL in graph neural networks (GNNs), Fig.1:
• For non-i.i.d. data such as graph, the message aggregation would amplify the noises of incorrect labels 

introduced by PL.
• The PL on the link can affect the inputs of GNN in the following iterations, which implies that the noises 

can accumulate to damage the base model's performance. 

Fig.2 Toy experiment on the comparison of PL strategy in graph learning (link prediction)

Toy experiment (Fig.2) shows that the base model can be improved, 
degraded or collapsed by PL in different situations.
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2.     Theoretical analysis

Given a graph 𝐺 and its perturbation "𝐺 = 𝐺(𝑋 ⊙, 𝐴 ⊙𝑀!) by the random feature masks 𝑀" ∈
1,0 #×% and adjacent matrix mask 𝑀! ∈ 1,0 #×# satisfying:

the GNN 𝑔 ⋅ has GPI property if there exists a constant 𝐶 > 0 such that the perturbed 
prediction confidence satisfies 𝑔 "𝐺 − 𝑔 𝐺 &

&
< 𝐶𝜖. 

⊙ is element-wise product, ⋅ ! is the 2-norm of the vector or matrix.

Assumption 1: Graph invariant property. It guarantees the variation of the output confidence is 
linearly bounded by the degree of graph perturbation (𝐶-Lipschitz condition).

Assumption 2: Additive expansion property. It guarantees the continuity of the 𝑝5 in the neighborhood
of the local optimal subset 𝑈. 

Correctness of the PL samples is discrete, we can apply multi-view 
augmentations, reparameterizing the 𝑝5 to be continuous.

Define a local optimal subset 𝑈 ⊂ 𝑌, whose probability is higher than a threshold 𝑝' 𝑦 > 1 − 𝑞, 𝑦 ∈ 𝑈, 
and its perturbation set 𝑈( = {=𝑦 = 𝑔 𝐺 : 𝑦 − =𝑦 & < 𝐶𝜀, 𝑦 ∈ 𝑈}, where 𝐺 ∈ "𝐺 is the space of the 
perturbed graph. Then, there exists 𝛼 > 0, 𝜂 > 0, s.t. the probability measure 𝑝' satisfying additive 
expansion property:

𝑝)' 𝑈*( ∖ 𝑈 ≥ 𝑝)' 𝑈 + 𝜂 ⋅ 𝛼.
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2.     Theoretical analysis
Theorem: Prediction error measurement

Let 𝑞 > 0 be a given threshold. For the GNN in the teacher model 𝑔!, if its corresponding density 
measure satisfies additive expansion, the error of the student predictor 𝑔" is bounded by:

where 𝒜 𝑔" = 𝔼#"#$"𝟏 ∃𝑔 *𝐺 ≠ 𝑔 𝐺 measures the inconsistency over differently augmented 
inputs, 𝑌$%&$ is the test set for evaluation.

𝐸𝑟𝑟 𝑔 = 2 𝑞 +𝒜 𝑔"

• If 𝑞 is small, the PL threshold 1 − 𝑞 approaches 1, leading to a smaller lower bound of error.
• For random PL, confidence threshold 𝑞 = 0.5 , then the maximum theoretical error rate is 1.
• A small value of 𝒜 indicates consistent prediction across different views. In such cases, we have 

more confidence in the predictions, leading to a smaller error bound. 

Theorem: Convergence analysis

The PL sample selection strategy 𝒯 influences the covariance term derived from the empirical loss, 
then affects the convergence property:

𝐿𝒯
($)*) ≤ 𝛽𝐶𝑜𝑣 𝒯, 𝑐𝑒 𝑔" , 𝑌 + 𝐿𝒯

($)

where 𝛽 is a positive constant, 𝑐𝑒 ⋅ is the element-wise cross entropy.  

• The effect of PL strategy is decoupled and encapsulated in the covariance term. If the 
covariance term is negative, then the loss function would be non-increasing.

• For random PL, 𝒯 would be independent with 𝑔F and the covariance becomes 0.
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2.     Theoretical analysis
Proposed model

Fig.3 Main scheme of Cautious Pseudo Label (CPL) in link prediction

• We calculate the averaged confidence of the multi-view augmentation.
• We select PL samples in unobserved set with the top-k confident samples.
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3.     Experiments
3.1 Overall performance

• CPL distinctively improves the performance 
of baseline models in nearly all cases in link 
prediction. The performance gain under the 
circumstances of both high and low
performance

Table 1: Performance (AUC/%) comparison on link prediction

Table 2: Performance (AUC%) comparison on node classification

• CPL consistently improves base models’ 
performance and outperforms the others. 
Other PL strategy may be ineffective or 
degrade the base model.
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3.     Experiments
3.2 Ablation experiments

Fig.5 Impact of multi-view augmentationFig.4 The effect of training ratio

• CPL consistently improves the performance 
of raw models even starting from a small 
training set.

• Multi-view augmentation contributes to a more 
robust graph learning and tends to obtain a 
consistent result.

Fig.6 Case study on convergence analysis

Table 4: Case study on error analysis

• Case study on the error analysis shows the effectiveness of the error bond in 
the Theorem and CPL can improve the improve the convergence property.
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4.     Conclusion and prospect

Conclusion:

Prospect

We provide deep insights into PL strategy:
• Offer theoretical explanations for the effect of PL strategies on prediction error and 

the convergence properties in graph learning.
• Introduce CPL strategy, a plug-in and practical technique that can be generally 

applied to various baseline models.
• The experiments demonstrate effectiveness and superiority of CPL.

• We plan to explore a more reliable confidence measures as the PL criteria, such as 
informativeness in the multi-view network and prediction uncertainty.



Thanks for listening
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