

### MIT-IBM Effective Human-AI Teams via Learned Natural Language Rules and Onboarding

NeurIPS 2023 Spotlight

arxiv.org/pdf/2311.01007.pdf

github.com/clinicalml/onboarding human ai



Vatsor AI Lab

Hussein Mozannar MIT



Jimin J Lee MIT



Dennis Wei IBM



Prasanna Sattigeri IBM



Subhro Das IBM



David Sontag MIT

## Humans Interacting with AI

**Setting:** you are learning to code, so you ask an AI for help

- Should you trust the Al's code?
- Try to solve it on your own?
- Edit the AI code to make it work?

#### You

Please solve this coding problem in Python: given two integers a and b, return the sum of the two integers without using the operators + and -., write concise code without examples

#### ChatGPT

You can solve this problem concisely using Python by employing bit manipulation. Here's a concise implementation:

| python                                                                                                                                                                                                                           | 🖞 Copy code |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| <pre>def get_sum(a, b):<br/>mask = 0xFFFFFFFF  # A mask to limit the result to 32 bits<br/>while b:<br/>a, b = (a ^ b) &amp; mask, ((a &amp; b) &lt;&lt; 1) &amp; mask<br/>return a if a &lt;= 0x7FFFFFFF else ~(a ^ mask)</pre> |             |
| # Example usage:                                                                                                                                                                                                                 |             |
| # a = 3                                                                                                                                                                                                                          |             |
| # b = 2                                                                                                                                                                                                                          |             |
| <pre># result = get_sum(a, b)</pre>                                                                                                                                                                                              |             |
| <pre># print(result)</pre>                                                                                                                                                                                                       |             |

This code uses a loop to simulate the addition process without using the `+` or `-` operators. It ensures the result is a 32-bit integer by applying a mask and handles negative results correctly. Uncomment the example usage to test the function with specific values.

## Humans Interacting with AI

**Setting:** you are driving but it's low visibility. Al dashboard is helping you see.

- Do you stop since AI is telling you it's a red light?
- Pull over until visibility improves?

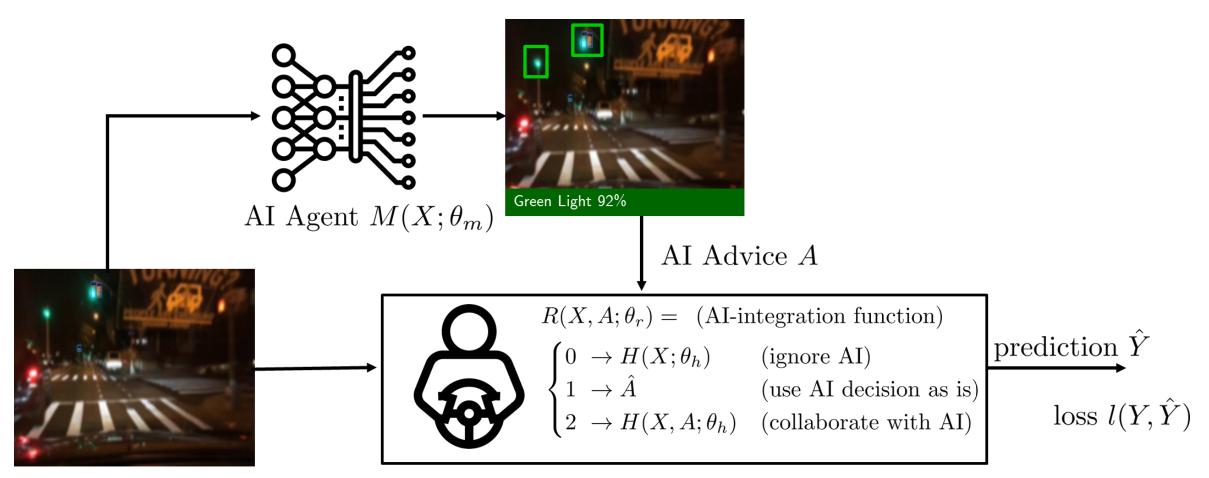


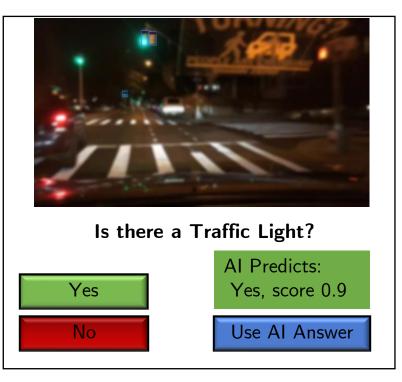

Image modified from https://www.popsci.com/technology/new-audi-tech-provides-traffic-light-updates/

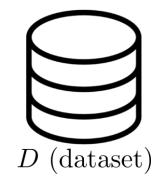
### **Central Problem:**

- How do you know when to:
- rely on the AI,
- collaborate with the AI or
- ignore its suggestion?

### **AI-Assisted Decision Making**




Human  $H(X, A; \theta_h)$ 

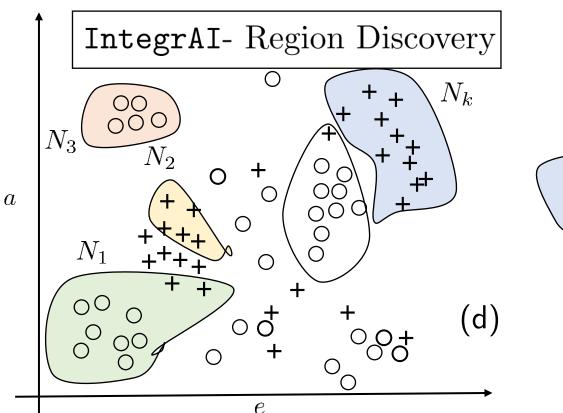

Input Context XGround Truth Y

## **Proposed IntegrAl Approach:**

- Learn from data the optimal Alintegration function
- Teach the human the optimal way to collaborate

### **Step 1: Human Data Collection** Understand Human performance and prior reliance on AI






- $x_i$  (task),  $y_i$  (answer)
- $a_i$  (AI),  $h_i$  (human)
- $t_i$  (text description),  $e_i$  (embedding)
- $r_i$  (used AI)

Assume the human has a prior integration function  $R_{0}$ , our goal is:

- Understand human performance without AI H(X)
- Understand the human prior R<sub>0</sub>

### **Step 2: Discover Regions** Find regions of data where human collaborates incorrectly with AI



Goal of teaching is to correct the prior: e.g. if human trusted the AI, in a region where AI is incorrect, find that region and inform the human!

Region is denoted by a **center** c and a **radius** gamma

### **Step 2: Discover Regions** Find regions of data where human collaborates incorrectly with AI

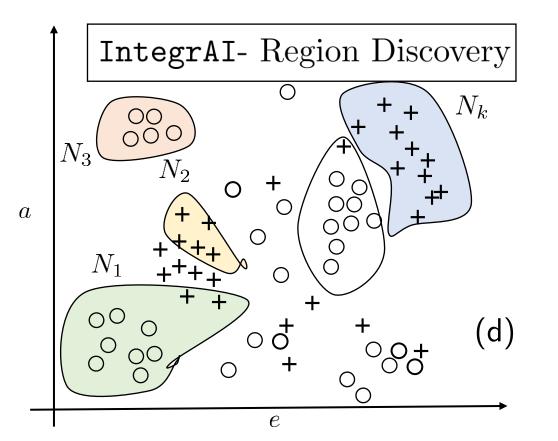
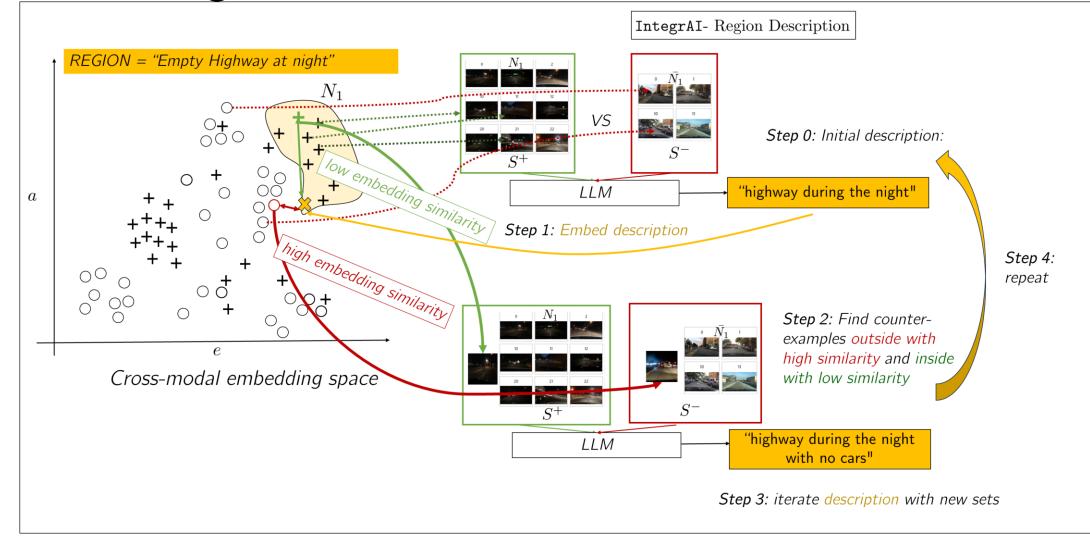
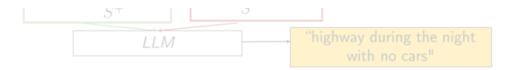




Table 3: Error  $(\downarrow)$  on the test set (in %) of the human-AI system when following integrators resulting from different region discovery methods with 10 regions on the different non-synthetic datasets.

|                               | BDD                              | MMLU                             | DynaSent     | MS-COCO                          |
|-------------------------------|----------------------------------|----------------------------------|--------------|----------------------------------|
| IntegrAI (ours)               | $\textbf{17.8} \pm \textbf{0.2}$ | $\textbf{45.3} \pm \textbf{0.3}$ | $20.2\pm0.3$ | $\textbf{22.6} \pm \textbf{0.4}$ |
| DOMINO [EVS+21]               | $18.9\pm0.4$                     | $48.1\pm0.2$                     | $20.0\pm0.2$ | $22.7\pm0.4$                     |
| K-MEANS [RLC <sup>+</sup> 22] | $19.0\pm0.5$                     | $\textbf{45.3} \pm \textbf{0.3}$ | $20.0\pm0.2$ | $23.2\pm0.1$                     |
| DoubleGreedy [MSS22]          | $18.9\pm0.1$                     | $46.1\pm0.6$                     | $20.0\pm0.2$ | $23.8\pm0.4$                     |

### **Step 3: Describe Regions** Describe regions in text with an LLM




### **Step 3: Describe Regions** Describe regions in text with an LLM



Table 5: Evaluation of our region description algorithm (Algorithm 2) on selected subsets of MS-COCO where the different algorithms try to describe a set of images that all contain a given object. For example, a region may be defined by images containing the object "apple". Then we compare the descriptions resulting from the different algorithms to the description "apple".

|          | best-caption     | SEAL            | IntegrAI $(S^- = \emptyset)$ | IntegrAI $(m=0)$ | IntegrAI $(m=5)$   | IntegrAI $(m=10)$ |
|----------|------------------|-----------------|------------------------------|------------------|--------------------|-------------------|
| METEOR   | $  12.9 \pm 1.9$ | $9.16 \pm 1.89$ | $24.3\pm3.3$                 | $25.4\pm3.2$     | $\bf 26.1 \pm 3.3$ | $25.4\pm3.3$      |
| sent-sim | $39.8 \pm 1.9$   | $44.1\pm2.5$    | $65.1 \pm 3.2$               | $67.0 \pm 3.1$   | $66.0 \pm 3.2$     | $68.0 \pm 3.3$    |
| ROUGE    | $5.81 \pm 1.2$   | $0.0 \pm 0.0$   | $25.6\pm4.9$                 | $32.6 \pm 5.4$   | $27.9 \pm 5.1$     | $35.6 \pm 5.5$    |
| SPICE    | $12.7\pm1.9$     | $7.53 \pm 2.3$  | $41.1\pm5.8$                 | $43.8\pm5.8$     | $45.2 \pm 5.8$     | $45.2 \pm 5.8$    |



Step 3: iterate description with new sets

## **Step 4: Teach Regions to Human** In onboarding stage, teach human each region

#### Region 1:

Ignore AI when it's a "highway during the night" **Region 2:**  
 1
 2

 1
 2

 1
 12

 1
 12

 1
 12

 1
 12

 1
 12

 1
 12

 1
 12

 1
 12

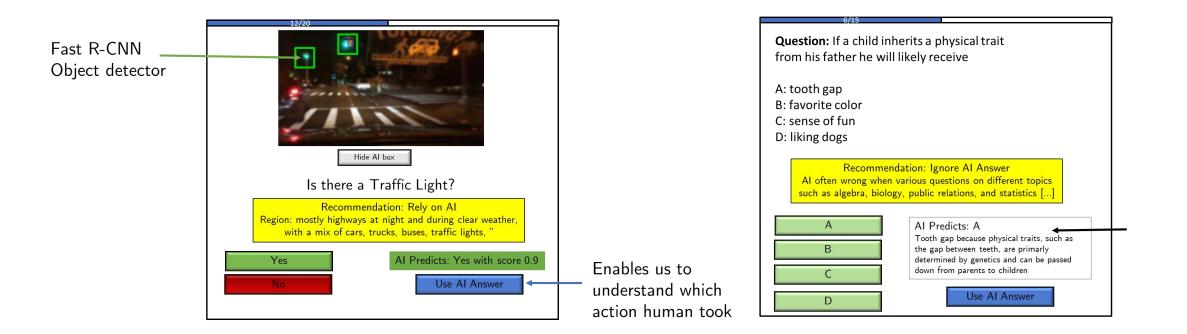
 1
 12

 1
 12

 1
 12

Use AI when it's a "city during the day"




. . .

Region k:

Teaching Phase: for each region

- **Step 1:** human predicts on example in region
- **Step 2**: human receives feedback about their correctness and the Ais correctness
- **Step 3:** (from example to region) human is shown the region description and a gallery of examples from the region

(any example the human gets wrong are re-shown)



Task: Given a blurry image, human must figure out if the light is red or green (proxy for moving forward)

Task: Given a multiple-choice question, human must figure out the right answer.

#### On BDD study:

Accuracy: without onboarding 77.2, with onboarding 82.6 (significant increase)

#### On BDD study:

Accuracy: without onboarding 77.2, with onboarding 82.6 (significant increase)

#### On MMLU study:

Accuracy: without onboarding 75.0, with onboarding 74.4, why?

#### On BDD study:

Accuracy: without onboarding 77.2, with onboarding 82.6 (significant increase)

#### On MMLU study:

Accuracy: without onboarding 75.0, with onboarding 74.4, why?

ChatGPT explanations often inform human whether to use its answer: - 'Unfortunately, the options provided do not provide a clear answer to [...]

- 'The answer cannot be provided with the given information [...]