

A Path to Simpler Models Starts with Noise

Lesia Semenova, Harry Chen, Ronald Parr, Cynthia Rudin

Machine Learning, 11, 63-91 (1993) © 1993 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Very Simple Classification Rules Perform Well on Most Commonly Used Datasets

ROBERT C. HOLTE Computer Science Department, University of Ottawa, Ottawa, Canada KIN 6N5

HOLTE@CSI.UOTTAWA.CA

Semenova et al. On the existence of simpler machine learning models. FaccT, 2022

Data about humans are noisy!

Clerical errors and data collection issues

Noise in high-stakes decision domains leads to *technical justification* for demanding simpler (interpretable) models

- COMPAS recidivism risk score * prediction dataset Space of decision trees
- **

- COMPAS recidivism risk score prediction dataset
- Space of decision trees

Uniform random label noise (Theorem 2) Labels flip with probability p(x) (Theorem 12) Margin noise (Theorem 15)

- COMPAS recidivism risk score prediction dataset
- Space of decision trees

- COMPAS recidivism risk score * prediction dataset
- Space of decision trees

noise

↗ the Rashomon ratio

Our results *explain* **why** on *noisier* datasets **simpler models often tend to perform as well as black boxes**

noise

A Path to Simpler Models Starts With Noise

Lesia Semenova Harry Chen Ronald Parr Cynthia Rudin Department of Computer Science, Duke University {lesia.semenova,harry.chen084,ronald.parr,cynthia.rudin}@duke.edu

https://arxiv.org/pdf/2310.19726.pdf

