

A Unified Generalization Analysis of Re-Weighting and Logit-Adjustment for Imbalanced Learning

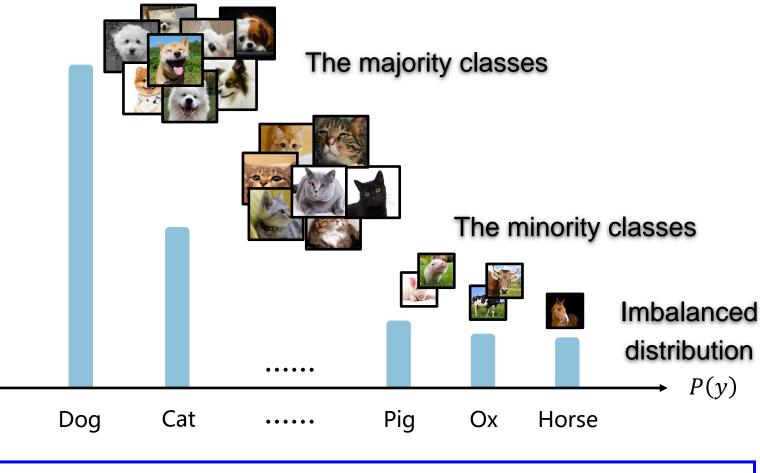
Zitai Wang, Qianqian Xu*, Zhiyong Yang,

Yuan He, Xiaochun Cao, Qingming Huang*

Zitai Wang

2023.11

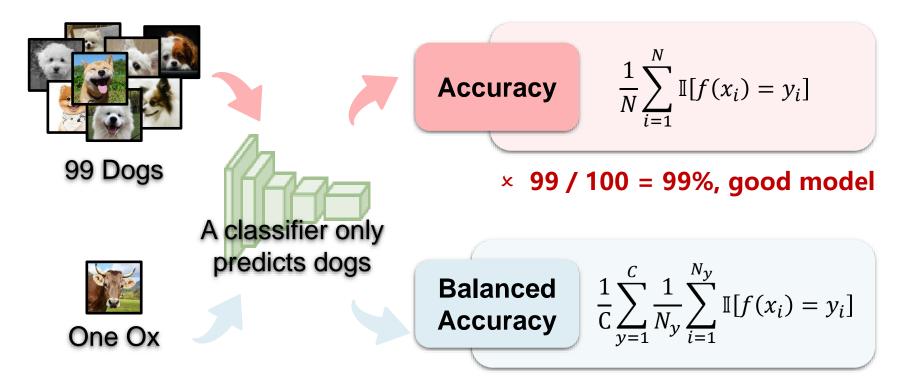
Real-world datasets are generally imbalanced



A naïve ERM learning process will be biased!

Background

□ Balanced Accuracy is a common metric in this case



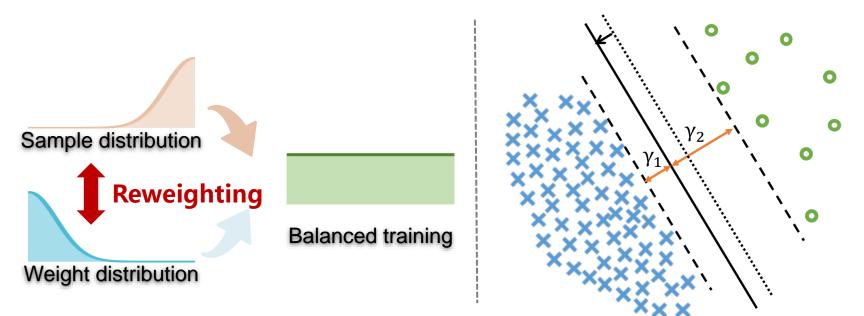
✓ (0 + 1) / 2 = 50%, bad model

How to improve model performance on Balanced Acc.?

Prior arts

Loss-modification approaches

- Re-weighting [1, 2]
- Logit adjustment [3, 4, 5]



- [1] Combining statistical learning with a knowledge-based approach, ICML, 1999.
- [2] Class-balanced loss based on effective number of samples, CVPR, 2019.
- [3] Learning imbalanced datasets with label-distribution-aware margin loss, NeurIPS 2019.
- [4] Long-tail learning via logit adjustment, ICLR, 2021
- [5] Label-imbalanced and group-sensitive classification under overparameterization, NeurIPS 2021

Prior arts

□ A unified formulation for RW and LA

•
$$\alpha_y = 1, \beta_y = 1, \Delta_y = 0 \rightarrow$$
Naïve CE loss

•
$$\alpha_y = (1-p)/(1-p^{N_y}), \beta_y = 1, \Delta_y = 0 \rightarrow \text{CB loss [2]}$$

•
$$\alpha_y = 1, \beta_y = 1, \Delta_y = \tau \log \pi_y \rightarrow \text{LA loss [4]}$$

•
$$\alpha_y = 1, \beta_y = (N_y/N_1)^{\gamma}, \Delta_y = 0 \rightarrow \text{CDT loss [6]}$$

$$L_{\rm VS}(f(\boldsymbol{x}), y) = -\alpha_y \log \begin{pmatrix} e^{\beta_y f(\boldsymbol{x})_y + \Delta_y} \\ \overline{\sum_{y'} e^{\beta_{y'} f(\boldsymbol{x})_{y'} + \underline{\Delta}_{y'}}} \end{pmatrix}$$

Reweighting term
multiplicative additive
adjustment term adjustment term

[2] Class-balanced loss based on effective number of samples, CVPR, 2019.

[4] Long-tail learning via logit adjustment, ICLR, 2021

[6] Identifying and compensating for feature deviation in imbalanced deep learning, Arxiv, 2020

□ Theoretical insights are still fragmented and coarsegrained, failing to explain some empirical results

Proposition (Union bound for Imbalanced Learning)

Given a function set \mathcal{F} and a μ -Lipschitz continuous loss $L: \mathbb{R} \times C \rightarrow [0, M]$, then for any $\delta \in (0, 1)$, with probability at least $1 - \delta$ over the training set S, the following generalization bound holds for all $g \in G$:

$$\mathcal{R}_{bal}^{L}(f) = \frac{1}{C} \sum_{y=1}^{C} \mathcal{R}_{y}^{L}(f) \preccurlyeq \frac{1}{C} \sum_{y=1}^{C} \left(\widehat{\mathcal{R}}_{y}^{L}(f) + \mu \widehat{\mathbb{C}}_{S_{y}}(\mathcal{F}) + 3M \sqrt{\frac{\log 2C/\delta}{2N_{y}}} \right)$$

Balanced risk
Balanced risk

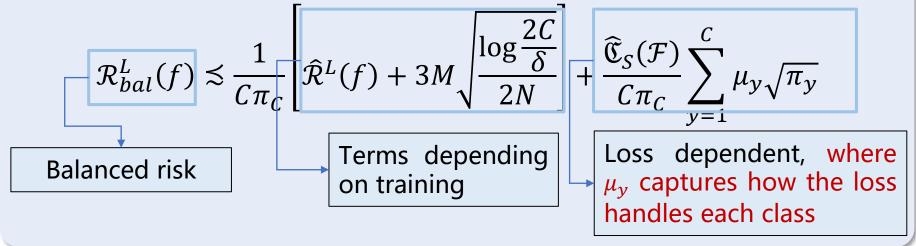
[3] Learning imbalanced datasets with label-distribution-aware margin loss, NeurIPS 2019.

Theoretical insights: propose local Lipschitz continuity

and construct a fine-grained generalization bound

Theorem (Data-Dependent Bound for Imbalanced Learning)

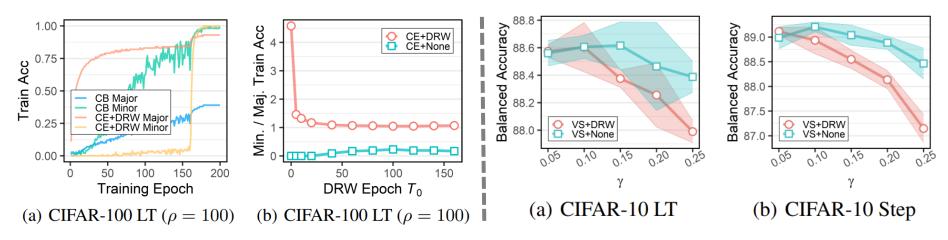
Given a function set \mathcal{F} and a loss function $L: \mathbb{R} \times C \to [0, M]$ with local Lipschitz constants $\{\mu_y\}_{y=1}^C$, then for any $\delta \in (0,1)$, with probability at least $1 - \delta$ over the training set \mathcal{S} , the following generalization bound holds for all $g \in \mathcal{G}$:



Theoretical insights: the fine-grained generalization

bound is consistent with some empirical results

- Deferred scheme is necessary
- Reweighting term and multiplicative adjustment term might be incompatible



Improved algorithm: a principled learning algorithm induced by the theoretical insights

Algorithm 1: Principled Learning Algorithm induced by the Theoretical Insights

Require: Training set $S = \{(x_i, y_i)\}_{i=1}^N$ and a model f parameterized by Θ .

- 1: Initialize the model parameters Θ randomly.
- 2: for $t = 1, 2, \cdots, T$ do $\mathcal{B} \leftarrow \text{SampleMiniBatch}(\mathcal{S}, m)$ 3: if $t < T_0$ then 4: Set $\alpha = 1, \beta_y, \Delta_y$ 5: 6: else Set $\alpha_y \propto \pi_y^{-\nu}, \beta_y = 1, \Delta_y, \nu > 0$ 7: end if 8: $L(f, \mathcal{B}) \leftarrow \frac{1}{m} \sum_{(\boldsymbol{x}, y) \in \mathcal{B}} L_{\text{VS}}(f(\boldsymbol{x}), y)$ 9: $\Theta \leftarrow \Theta - \eta \nabla_{\Theta} L(f, \mathcal{B})$ 10: Optional: anneal the learning rate η . 11: 12: end for

 \triangleright A mini-batch of *m* samples

> Adjust logits during the initial phase

Reweighting is deferred and aligns with the bound

✓ $\beta_y = 1$ when reweighting is used

▷ Calculate the loss

▷ One SGD step

 \triangleright Required when $t = T_0$

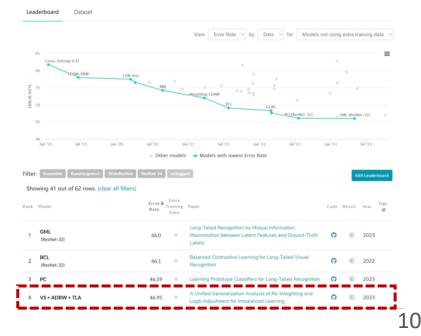
Improved algorithm: a principled learning algorithm

induced by the theoretical insights

Dataset	CIFAR-10		CIFAR-100	
Imbalance Type	LT	Step	LT	Step
w/o SAM				
CE LDAM VS	$\begin{array}{ c c c } & 71.5_{\pm0.4} \\ & 73.8_{\pm0.4} \\ & 78.8_{\pm0.2} \end{array}$	$\begin{array}{c} 64.8_{\pm 0.9} \\ 65.8_{\pm 0.6} \\ 76.1_{\pm 0.7} \end{array}$	$\begin{array}{ } 38.3_{\pm 0.4} \\ 39.9_{\pm 0.7} \\ 41.8_{\pm 0.7} \end{array}$	$\begin{array}{c} 38.6_{\pm 0.2} \\ 39.2_{\pm 0.0} \\ \textbf{46.2}_{\pm 0.3} \end{array}$
CE+DRW LDAM+DRW VS+DRW	$\begin{array}{c c} 75.8_{\pm 0.3} \\ 77.7_{\pm 0.4} \\ \textbf{80.1}_{\pm 0.1} \end{array}$	$\begin{array}{c} 72.2_{\pm 0.8} \\ 77.8_{\pm 0.5} \\ \textbf{78.2}_{\pm 0.2} \end{array}$	$\begin{array}{c c} 40.8_{\pm 0.6} \\ \textbf{42.7}_{\pm 0.5} \\ 41.3_{\pm 0.4} \end{array}$	$\begin{array}{c} 45.4_{\pm 0.4} \\ 45.3_{\pm 0.6} \\ 44.0_{\pm 0.3} \end{array}$
CE+ADRW LDAM+ADRW VS+TLA+DRW VS+TLA+ADRW	$\begin{array}{ } \textbf{78.6}_{\pm 0.5} \\ \textbf{79.1}_{\pm 0.2} \\ \textbf{80.8}_{\pm 0.2} \\ \textbf{81.1}_{\pm 0.2} \end{array}$	$\begin{array}{c} 75.5_{\pm 0.6} \\ 78.5_{\pm 0.4} \\ \textbf{80.0}_{\pm 0.1} \\ \textbf{80.9}_{\pm 0.2} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 46.5_{\pm 0.3} \\ 45.8_{\pm 0.2} \\ \textbf{46.8}_{\pm 0.1} \\ \textbf{47.8}_{\pm 0.1} \end{array}$
w/ SAM				
CE+DRW LDAM+DRW VS	$\begin{array}{c c} 80.5_{\pm 0.2} \\ 81.6_{\pm 0.2} \\ \textbf{82.6}_{\pm 0.2} \end{array}$	$\begin{array}{c} 79.5_{\pm 0.3} \\ 81.2_{\pm 0.7} \\ \textbf{83.2}_{\pm 0.4} \end{array}$	$\begin{array}{c c} 44.7_{\pm 0.6} \\ 45.2_{\pm 0.3} \\ \textbf{45.9}_{\pm 0.3} \end{array}$	$\begin{array}{c} 48.5_{\pm 0.3} \\ \textbf{49.1}_{\pm 0.2} \\ 47.4_{\pm 0.3} \end{array}$
CE+ADRW LDAM+ADRW VS+TLA+ADRW	$\begin{array}{c c} 82.6_{\pm 0.2} \\ 83.0_{\pm 0.1} \\ 83.6_{\pm 0.2} \end{array}$	$\begin{array}{c} \textbf{82.8}_{\pm 0.9} \\ \textbf{82.4}_{\pm 0.3} \\ \textbf{83.8}_{\pm 0.1} \end{array}$	$\begin{array}{c c} 44.9_{\pm 0.6} \\ 46.3_{\pm 0.4} \\ 46.4_{\pm 0.6} \end{array}$	$\begin{array}{c} 48.9_{\pm 0.2} \\ \textbf{49.3}_{\pm 0.4} \\ \textbf{49.1}_{\pm 0.2} \end{array}$

Rank 4th if using more techniques (models with extra training data or ensemble are filtered)

Long-tail Learning on CIFAR-100-LT (ρ =100)



Thanks for your listening!

11