Train Hard, Fight Easy: Robust Meta RL

Ido Greenberg, Shie Mannor, Gal Chechik, Eli Meirom NeurIPS 2023

Meta Reinforcement Learning

- Learn to adapt to new tasks
- Goal expected return over all tasks $\{\tau\}$:

 $\operatorname{argmax} E_{\tau,R}[R]$

Meta Reinforcement Learning

- Learn to adapt to new tasks
- Goal expected return over all tasks $\{\tau\}$:

$\operatorname{argmax} E_{\tau,R}[R]$

- Expectation may not suffice
 - Single test task
 - Sensitivity to risk

Robustness in Meta-RL

- Be robust to the task
- Goal expected return over α lowest-return tasks:

 $\operatorname{argmax} CVaR_{\tau}^{\alpha}[E_{R}[R]]$

CVaR Policy Gradient

Only applied to α worst tasks in the data
 ⇒ most data not used
 ⇒ sample inefficient

CVaR Policy Gradient

- Only applied to α worst tasks in the data
 ⇒ most data not used
 ⇒ sample inefficient
- Robust Meta-RL (RoML):
 - Over-sample low-return tasks
 - Sample efficiency is recovered

Unbiased Policy Gradient

- Background:
 - In standard (non-meta) RL, CVaR-PG yields biased gradients

Unbiased Policy Gradient

- Background:
 - In standard (non-meta) RL, CVaR-PG yields biased gradients
- Theorem:
 - In Meta-RL, CVaR-PG yields unbiased gradients

Experiments

- Better CVaR return
- Less sensitive to task

Experiments

- Better CVaR return
- Less sensitive to task
- Meaningful policies

mass

RoML as Meta-Algorithm

- Can run on top of any meta-RL algorithm: just modify task-sampling in training
- Example:

