UNIFYING GANS AND SCORE-BASED DIFFUSION AS GENERATIVE PARTICLE MODELS

NeurIPS 2023, December $10^{th} - 16^{th}$

J.-Y. Franceschi,¹ M. Gartrell,¹ L. Dos Santos,^{1,*} T. Issenhuth,^{1,2,*} E. de Bézenac,^{3,*} M. Chen,^{4,*} A. Rakotomamonjy^{1,*}

¹Criteo Al Lab, Paris, France ²LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France ³Seminar for Applied Mathematics, D-MATH, ETH Zürich, Zürich-8092, Switzerland ⁴Valeo.ai, Paris, France *Randomly chosen order **CRITEO** Al Lab

GANs

 \rightarrow Generator trained by discriminating true vs fake data.

Diffusion

ightarrow Learns to progressively reverse a data degradation process.

- Generator (manifold learning).
- ► Close to SOTA performance.
- ► Harder to optimize.
- Fast inference.

- No generator (operates on the data space).
- ► SOTA performance.
- Easier to optimize.
- ► Slow inference.

GANs

 \rightarrow Generator trained by discriminating true vs fake data.

Diffusion

 \rightarrow Learns to progressively reverse a data degradation process.

- Generator (manifold learning).
- Close to SOTA performance.
- ► Harder to optimize.
- ► Fast inference.

- No generator (operates on the data space).
- ► SOTA performance.
- Easier to optimize.
- Slow inference.

GANs

 \rightarrow Generator trained by discriminating true vs fake data.

Diffusion

 \rightarrow Learns to progressively reverse a data degradation process.

- Generator (manifold learning).
- ► Close to SOTA performance.
- ► Harder to optimize.
- Fast inference.

- No generator (operates on the data space).
- SOTA performance.
- Easier to optimize.
- Slow inference.

Models make a particle distribution ρ_t evolve with time t.

- Models make a particle distribution ρ_t evolve with time t.
- Particles follow a gradient vector field \(\nabla h_{\rho_t}\):
 - during inference;

CRITEO

AI Lab

Definition (Particle Models, PMs)

 $x_0 \sim \pi = \rho_0$

$$\mathrm{d}x_t = \nabla h_{\rho_t}(x_t) \,\mathrm{d}t,$$

where t is the inference time.

Unifying GANs and Score-Based Diffusion as Generative Particle Models – Jean-Yves Franceschi

- Models make a particle distribution ρ_t evolve with time t.
- Particles follow a gradient vector field \(\nabla h_{\rho_t}\):
 - during inference;
 - or smoothed during generator training with loss:

$$\mathcal{L}_{\theta_t} = -\mathbb{E}_{z \sim p_z} h_{\rho_t} \big(g_{\theta_t}(z) \big).$$

CRITEO

AI Lab

Definition (Interacting Particle Models, Int-PMs)

 $\mathrm{d}g_{\theta_t}(z) = \eta \big[\mathcal{A}_{\theta_t}(z) \big] \big(\nabla h_{\rho_t} \big) \, \mathrm{d}t,$

where t is the training time of the generator $g_{\theta_t}(z)$.

Model	Generator	Flow type $ abla h_{ ho_t}$	

Model	Generator	Flow type $\nabla h_{ ho_t}$
Score-based diffusion models	×	$\alpha_t \nabla \log \Big[p_{\text{data}} \star k_{\text{RBF}}^{\sigma(t)} \Big] - \beta_t \nabla \log \rho_t$

Example for NCSN (Song et al., 2019) using Langevin sampling:

$$dx_t = \nabla \log[p_{\text{data}} \star k_{\text{RBF}}^{\sigma}](x_t) dt + \sqrt{2} dW_t,$$

$$dx_t = \nabla \log[p_{\text{data}} \star k_{\text{RBF}}^{\sigma}](x_t) dt - \frac{\nabla \log \rho_t(x_t) dt}{\text{gen. score}}.$$

► In diffusion, particles follow a log ratio gradient.

Model	Generator	Flow type ∇h_{ρ_t}
Score-based diffusion models	×	$\alpha_t \nabla \log \Bigl[p_{\mathrm{data}} \star k_{\mathrm{RBF}}^{\sigma(t)} \Bigr] - \beta_t \nabla \log \rho_t$
GANs	1	$- abla(c\circ f_{ ho t})$, where $f_{ ho t}$ is a discriminator between $ ho_t$ and $p_{ m data}$

With gradient descent-ascent and generator loss:

$$\min_{g} \max_{f} \mathcal{L}(f,g)$$

$$\mathcal{L}_{\theta} = \mathbb{E}_{z \sim p_z} \Big[\big(c \circ f_{\rho} \big) \big(g_{\theta}(z) \big) \Big]$$

(Goodfellow et al., 2014)

▶ In GANs, particles follow the discriminator gradient.

Model	Generator	Flow type $ abla h_{ ho_t}$
Score-based diffusion models Score GANs	×	$\alpha_t \nabla \log \Big[p_{\text{data}} \star k_{\text{RBF}}^{\sigma(t)} \Big] - \beta_t \nabla \log \rho_t$
Discriminator Flows GANs	×	$- abla(c\circ f_{ ho_t})$, where $f_{ ho_t}$ is a discriminator between $ ho_t$ and $p_{ m data}$

Claim

It is possible to train:

- a generator with diffusion (Score GAN);
- > a GAN without a generator (Discriminator Flow).

Experimental Validation

Animated samples: https://jyfranceschi.fr/publications/gpm/.

Unifying GANs and Score-Based Diffusion as Generative Particle Models - Jean-Yves Franceschi