Training Private Models That Know What They Don't Know

Stephan Rabanser^{1,2} Anvith Thudi^{1,2} Abhradeep Thakurta³ Krishnamurthy (Dj) Dvijotham³ Nicolas Papernot^{1,2}

 $^1 \text{University}$ of Toronto $\ ^2 \text{Vector Institute} \ \ ^3 \text{Google DeepMind}$

Correspondence to: stephan@cs.toronto.edu

Motivation: Input Sample Rejection

Selective Classification (SC) with Training Dynamics

Goal: Derive a selection function $g : \mathcal{X} \to \mathbb{R}$ which, given an acceptance threshold τ , determines whether a model $f : \mathcal{X} \to \mathcal{Y}$ should predict on a data point \mathbf{x} .

$$(f,g)(oldsymbol{x}) = egin{cases} f(oldsymbol{x}) & g(oldsymbol{x}) \leq au \ oldsymbol{\perp} & ext{otherwise} \end{cases}$$

New approach: Selective Classification Training Dynamics (SCTD)

Rabanser et al. "Selective Classification via Neural Network Training Dynamics." 2022.

Definition: Differential Privacy

A randomized algorithm \mathcal{M} satisfies (ε, δ) differential privacy, if for any two datasets $D, D' \subseteq \mathcal{D}$ that differ in any one record and any set of outputs S the following inequality holds:

 $\mathbb{P}\left[\mathcal{M}(D)\in S
ight]\leq e^{arepsilon}\mathbb{P}\left[\mathcal{M}(D')\in S
ight]+\delta$

- $\varepsilon \in \mathbb{R}_+$ specifies the privacy level.
- $\delta \in [0, 1]$ allows for a small violation of the bound.
- Most popular implementation for DP in DNNs is DP-SGD.

$$\begin{array}{c} D \to \mathcal{M}_{\varepsilon,\delta} \to & & & \\ \hline D' \to \mathcal{M}_{\varepsilon,\delta} \to & & & \\ \end{array} \begin{array}{c} \text{close by} \\ (\varepsilon,\delta) \end{array}$$

No changes in DP guarantees.

Direct Optimization

Loss function / architecture modifications.

Post-Processing

Post-hoc modifications and training-time ensembles (SCTD).

Worsened DP guarantee.

Advanced Sequential Composition

Methods iterating over the data multiple times, i.e., classical ensembling methods.

To maintain overall (ε, δ) -DP, each model needs to satisfy $\approx \left(\frac{\varepsilon}{\sqrt{M}}, \frac{\delta}{M}\right)$ -DP.

Impacts of DP on SC Performance: "DP \longrightarrow SC"

Differential privacy degrades selective classification performance beyond a loss in overall utility!

Training DP Models That Know What They Don't Know 6

Consistent SC Evaluations Under DP

Compare performance across SC approaches

- 1. align SC methods to the same accuracy.
- 2. evaluate AUC metric for all SC methods.

But under DP: accuracy $\stackrel{\approx}{\longleftrightarrow} \varepsilon$. Training for less leads to expending less privacy budget.

Upper bound on SC performance

$$\overline{\mathsf{acc}}(\mathsf{a}_{\mathsf{full}}, c) = egin{cases} 1 & 0 < c \leq \mathsf{a}_{\mathsf{full}} \ rac{\mathsf{a}_{\mathsf{full}}}{c} & \mathsf{a}_{\mathsf{full}} < c < 1 \end{cases}$$

correct

Accuracy

0.5

0

0

 $c = a_{\text{full}}$

0.5

Our accuracy-normalized SC score

$$s(f,g) = \int_0^1 (\overline{\operatorname{acc}}(a_{\mathsf{full}},c) - \operatorname{acc}_c(f,g)) dc$$

7 Training DP Models That Know What They Don't Know

Results on CIFAR-10

Training DP Models That Know What They Don't Know: Conclusion

- Analyzed how SC impacts DP guarantees and how DP impacts SC performance.
- Introduced a novel score to disentangle SC performance from baseline utility.
- SC performance degrades with stronger privacy (i.e. as $\varepsilon \to 0$).
- SCTD works best to quantify uncertainty under DP.

