

Temporal Dynamic Quantization for Diffusion Models

Junhyuk So* 1, Jungwon Lee* 1, Daehyun Ahn 2, Hyungjun Kim 2 and Eunhyeok Park 1

¹ Pohang University of Science and Technology

² SqueezeBits Inc

Diffusion Models

SDXL : Stable Diffusion XL [1]

■ Recently, Diffusion models have gained popularity due to its remarkable performance.

Mechanism of Diffusion Model

■ Diffusion model is **denoising** model. It removes small amount of noise from noisy image.

Mechanism of Diffusion Model

- Diffusion model is **denoising** model. It removes small amount of noise from noisy image.
 - By iteratively denoising from pure noise, we can generate new image.

Mechanism of Diffusion Model

- Diffusion model is **denoising** model. It removes small amount of noise from noisy image.
 - By iteratively denoising from pure noise, we can generate new image.
- **Problem** : Diffusion model is **too slow** because it requires **hundreds** of denoising steps for generation.

Quantization

Quantization is one of the most widely adopted optimization techniques.

Quantization

- Quantization is one of the most widely adopted optimization techniques.
 - Activations and weights are stored in a **low-precision domain**.
 - Reduce memory usage & enable acceleration.

However, applying quantization to diffusion models is known to be very challenging.

■ However, applying quantization to diffusion models is known to be very challenging.

- We discovered that this is due to unique property of diffusion model's denoising process.

■ However, applying quantization to diffusion models is known to be very challenging.

- We discovered that this is due to unique property of diffusion model's denoising process.
- Activation distribution of each layer **varies significantly** depending on the time step.

■ There are two types of error source in quantization.

■ There are two types of error source in quantization.

- **Rounding Error** : Values within quantization range are mapped to the nearest quantization bin.

- There are two types of error source in quantization.
 - **Truncation Error** : Values greater than the last quantization bin are truncated to it.

- There are two types of error source in quantization.
 - **Rounding Error** : Values within quantization range are mapped to the nearest quantization bin.
 - **Truncation Error** : Values greater than the last quantization bin are truncated to it.
- There is **<u>trade-off</u>** between these two error sources.

POSTECH

■ In this case, static quantizer cannot handle **Quantization Error Trade-off** effectively.

- In this case, static quantizer cannot handle **Quantization Error Trade-off** effectively.
 - Calibrating Quantizer to $T=0 \rightarrow$ Large Truncation error when T=100

- In this case, static quantizer cannot handle **Quantization Error Trade off** effectively.
 - Calibrating Quantizer to $T=100 \rightarrow Large Rounding error$ when T=0

Dynamic Quantization

■ Solution : Dynamic Quantization ?

One easy solution is using Input-dependent dynamic quantization.

Dynamic Quantization

■ Solution : Dynamic Quantization ?

- One easy solution is using Input-dependent dynamic quantization.
 - It generates quantization interval based on **input statistics**, such as *min,max,var*.

Dynamic Quantization

■ Solution : Dynamic Quantization ?

- One easy solution is using Input-dependent dynamic quantization.
 - It generates quantization interval based on **input statistics**, such as *min,max,var*.
 - However, process of gathering these statistics introduces **significant overhead** in inference.

Ours : Temporal Dynamic Quantization

• Our Solution :

Instead, we propose our method : **Temporal Dynamic Quantization**

Ours : Temporal Dynamic Quantization

• Our Solution :

- Instead, we propose our method : Temporal Dynamic Quantization
- Unlike dynamic quantization, we only use temporal information rather than input activation statistics.

Ours : Temporal Dynamic Quantization

• Our Solution :

- Instead, we propose our method : **Temporal Dynamic Quantization**
- Unlike dynamic quantization, we only use temporal information rather than input activation statistics.
 - Since we can pre-compute quantization interval, our method incurs no overhead.

POSTECH

■ In standard setting, our TDQ module has 3 components : Frequency Encoding

- Frequency Encoding : We use Geometric Fourier Encoding to inject high frequency components.

$$I = enc(t) = (sin(\frac{t}{t_{max}^{0/d}}), cos(\frac{t}{t_{max}^{0/d}}), sin(\frac{t}{t_{max}^{2/d}}), cos(\frac{t}{t_{max}^{2/d}}), ..., sin(\frac{t}{t_{max}^{d/d}}), cos(\frac{t}{t_{max}^{d/d}})), sin(\frac{t}{t_{max}^{d/d}}), cos(\frac{t}{t_{max}^{d/d}})), sin(\frac{t}{t_{max}^{d/d}}), cos(\frac{t}{t_{max}^{d/d}}), cos(\frac{t}$$

■ In standard setting, our TDQ module has 3 components : Frequency Encoding , MLP

- MLP : MLP is trained to **predict optimal quantization interval** for each time step.
 - TDQ consists of 4 layer MLP with ReLU activation. (hidden dim 64)

- In standard setting, our TDQ module has 3 components : Frequency Encoding, MLP, Softplus
 - **SoftPlus** : SoftPlus function constrains data ranges to **non-negative value**.

- In standard setting, our TDQ module has 3 components : Frequency Encoding, MLP, Softplus
- Every part of TDQ module is differentiable.
 - TDQ module can be trained to minimize quantization error by using gradient descent.

■ However, in PTQ, standard setting was prone to overfitting due to two reason.

1) Limited calibration dataset (typically 256 samples) makes it challenging to train standard TDQ.

■ However, in PTQ, standard setting was prone to overfitting due to two reason.

2) The relatively brief training iteration make it hard to filter out the high-frequency component.

- However, in PTQ, standard setting was prone to overfitting due to two reason.
 - To mitigate these constraints, we introduced a streamlined version of TDQ, referred to as TDQ_{thin}.
 - This refined module uses a 3-layer MLP with a mere 16 hidden dimensions and omits the frequency encoding for time steps.

Experimental Results

Quantization Aware Training (QAT)

(FID)	W8A8	W4A8	W8A4	W4A4	W3A3
PACT [2]	9.20	9.94	8.59	10.35	12.95
LSQ [3]	-	4.92	5.08	5.06	7.21
Ours	3.87	4.04	4.86	4.64	6.57

W4A8

W4A4

Ours

TDQ gives **substantial quality improvement**, and benefit becomes even larger in lower precision.

[2] Choi, Jungwook, et al. "Pact: Parameterized clipping activation for quantized neural networks." [3] Esser, Steven K., et al. "Learned step size guantization." 31/37

LSUN-Churches

Ours

Experimental Results

Post Training Quantization (PTQ)

			-	
Ours	(FID)	W8A8	W8A6	W8A5
	Min-Max	4.34	103.15	269.05
	PTQ4DM [4]	3.97	4.26	7.06
LSQ[3]	Ours	3.89	4.24	4.85

- TDQ also shows performance improvement in PTQ.
- Our method can be applicable to any quantization pipeline seamlessly.

POSTECH

Experimental Results

Post Training Quantization (PTQ)

(FID)	Churches W4A8	Churches W4A6	ImageNet W4A6
Baseline [5]	76.36	158.07	47.26
TDQ	44.48	120.53	41.23
TDQ _{thin}	28.74	55.27	16.96

- Even at **low precision weights**, TDQ shows performance improvement over baseline.
- Additionally, TDQ_{thin} outperforms all these cases.

Generalization Performance

- Sampling process is usually executed in fewer time step (10 ~ 50) than training (1000).
- TDQ's performance declines similarly to the **FP baseline**, while LSQ's performance deteriorates as the number of sampling step decreases.

TDQ Output Dynamics

- Blue : Predicted Quantization Interval , Red : Variance of Activation
- In most cases, TDQ's output dynamics show alignment with variation.

TDQ Output Dynamics

- Blue : Predicted Quantization Interval , Red : Variance of Activation
- Few layers show different tendency :

These indicate that TDQ module is attempting to minimize final task error, not layer quantization error.

Thank You

