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TL:DR

e Flow is a per-instance and per-client personalization method to address
the statistical heterogeneity issue in Federated Learning.



TL:DR

e Per-instance personalization addresses the following two shortcomings of
Per-client personalization methods:
o Performance of some clients is worse after personalization

o For the clients who benefit from personalization, some instances still prefer the global

model.



TL:DR

e Flow creates dynamic personalized models that are adaptive not only to
each client’s data distributions but also to each client’s data instances.
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The Data Heterogeneity Issue
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Personalization to Rescue
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Client-wise Personalization is Limited

Even for the benefitting clients, not all instances

But, not all clients benefit from personalization prefer the personalized model
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Flow

Train the routing policy
and global parameters
alternatively.
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Results (Generalized and Personalized Accuracy)

Observation 1

Validation Accuracy (Generalized)
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Flow achieves 1.11-3.46% higher generalized
accuracy and 1.33-4.58% higher personalized
accuracy over the best performing baseline.
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Observation 2

Flow learns to put emphasis on data instances that
are more aligned with the global data distribution
to improve the performance of the global model.



Results (Harmed Clients)
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Observation 3

Flow achieves the highest
percentage of clients who
benefit from
personalization compared
to all personalization
baselines, echoing the
better personalized
accuracy from Flow.



Results (Routing Policy Behavior)

w (Probability of picking the global route)

For instances that can be correctly classified by both
models (both-correct), the routing policy still prefers
the global parameters over local parameters.
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For instances that are correctly
classified by w_ but not by

w_ (global-only), we see a clear
trend of the routing parameters
getting more confident about
picking the global parameters.

As a contrast, for instances that
are correctly classified by w_ but
not by w_ (personalized-only), we
see the trend of routing policy
being more confident in picking
the local parameters.



Conclusion

e Flow creates dynamic personalized models with a routing policy that allow
instances on each client to choose between global and local parameters to
improve clients’ accuracy.



Conclusion

e \We derived error bounds for global and personalized models of Flow, showing
how the routing policy affects the rate of convergence.

e The theoretical analysis validates our empirical observations related to clients

preferring either a global or a local route based on the heterogeneity of individual
instances.



Conclusion

e Extensive evaluation on both vision and language-based prediction tasks
demonstrates the effectiveness of Flow in improving both the generalized and
personalized accuracy.



