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Main Problem

* Given a heterogeneous FL algorithm that trains a shared global model through a

sequence of time-varying and client-dependent local models, what conditions can guarantee its
convergence?

* How do the trained models compare to that of standard FL?



Contributions
Qq,n,T

* We establish sufficient conditions for FL algorithms with
heterogeneous local models to converge to a neighborhood of a
stationary point of standard FL.

* We formulate the problem to allow any model reduction strategy and
identify two key factors that impact the convergence:

e pruning-induced noise
* minimum coverage index

* The results are numerically validated.



Convergence Analysis

* Key Notion: minimum covering index

F o iIl ‘ N (’1) | Since |V, ,;E”| is the number of heterogeneous local models containing the ith parameter, 1'y,i, measures
q,1 q the mimmimum occurrence of the parameter n the local models n all rounds.
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Convergence Analysis

* Key Notion: minimum covering index

( ) Since |J'\.."r':”| 18 the number of heterogeneous local models containing the ith parameter, 1y, measures
I''hin = min ! ¢

q.t the mimmimum occurrence of the parameter n the local models n all rounds.

Theorem 1. Under Assumptions 1-4 and for arbitrary masks satisfying I'\,i, > 1, heterogeneous FL
converges to a small neighborhood of a stationary point of standard FL as follows:
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where Vy = 3L2NG’/me, Iy = 3L*N, and Gy = AE[F(6o)] + 6LN02/F

depending on the initial model parameters and the gradient noise.

min» are constants



Insights

* Every Parameter Matters

* The analysis shows that as long as each global parameter appears in at least one local model per
communication round, heterogeneous federated learning can converge.

* More coverage leads to faster convergence

* Instead of pruning greedily for local heterogenous models, the minimum coverage index should
also be considered
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Global Loss

Experiments
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Conclusion

* We have provided convergence guarantees for heterogeneous
federated learning algorithms employing arbitrary, dynamic local
models under sufficient conditions.

* The analysis identifies model reduction noise and minimum coverage
index as two key factors that impact the convergence gap.

* These insights can guide the design of optimized model reduction
strategies to improve convergence.

* Experiments on image classification validate the theory and show
optimized strategies guided by the analysis can improve accuracy.
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