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Improper Binding
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Improper Binding | MidJourney-5
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Improper Binding | DALL-E 3
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Why does it happen?

● The underlying model does not represent the relations between words

● The text encoder acts to a large extent as a bag of words
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How do we solve this?

● Uncover semantic constraints

● Use parser to inject linguistic knowledge

● Enforce the constraints by intervening in the generation process
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SynGen | Our goal

● In inference-time (no training or fine-tuning)

● We seek to fix all three leakage types
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SynGen | Our approach

● Guide the diffusion on the prompt’s syntax

● Steer the cross-attention using syntax in inference-time

● Obtain the syntactic structure of the prompt
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SynGen | Syntactic structure
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SynGen | Syntactic structure
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SynGen | Obtaining Cross Attention Maps
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“Prompt-to-Prompt Image Editing with Cross Attention Control” by Hertz et al., 2022 27



Cross-attention

SynGen | Obtaining cross-attention maps

The figure is taken from “Prompt-to-Prompt Image Editing with Cross Attention Control” 28



Cross-attention

SynGen | Obtaining cross-attention maps

The figure is taken from “Prompt-to-Prompt Image Editing with Cross Attention Control”

→
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SynGen | Aligning the denoising process

30

● Cross-attention maps are (token,patch) pairs and are derived from the latent
● We can define a loss that updates the latent (noise)



SynGen | Aligning the denoising process
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● Cross-attention maps are (token,patch) pairs and are derived from the latent
● We can define a loss that updates the latent (noise)
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○ encourage overlap of maps corresponding to entities and their modifiers



SynGen | Aligning the denoising process
● Cross-attention maps are (token,patch) pairs and are derived from the latent
● We can define a loss that updates the latent (noise)

strawberrya goldenand ared crown
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Loss
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Loss
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○ encourage overlap of maps corresponding to entities and their modifiers
○ discourage overlap with all other maps



SynGen | Computing the loss

● Minimize distance over related (entity, modifier) pairs
○ Normalize maps
○ Compute Symmetric KL 

● Maximize distance over non-related (entity, modifier) pairs
○ Normalize maps
○ Compute Symmetric KL
○ Negate result

● Adding the terms:  L = Lpos + Lneg
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SynGen | Workflow
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SynGen | Workflow
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SynGen | Evolution of Cross-attention Maps

Prompt
a red crown and a 
golden strawberry

t = 25

“Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models” by Cheffer and Alaluf et al., 2023
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Experiments

We compare our method to three baselines
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Experiments

We compare our method to three baselines

● Attend-and-Excite, StructureDiffusion, Stable Diffusion

● Across two existing datasets and a novel challenging one by us

● Using human raters on two metrics
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Experiments | Datasets
ABC-6K Attend-and-Excite DVMP (ours)

Key 
Challenges

* Subset of MSCOCO 
(human authored)

* Contains 
contrastive examples

* Entities are objects 
or animals

* Only colors as 
modifiers

* More objects and 
animals

* Many types of modifiers

* Much harder sentences

Format Free-form text A {color-1} {entity-1} and a 
{color-2} {entity-2}

A {modifier-1} … {entity-1} and 
a {modifier-2} … {entity-2} …

Examples A white fire hydrant sitting 
in a field next to a red 
building

A monkey and a black bow a wooden crown and a furry 

baby rabbit and a pink metal 

bench

# Examples 600 177 600
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Experiments | Human Evaluation

● Raters on Mechanical Turk
○ 3 raters
○ 100% on qualification test, ≥ 99% approval, ≥ 5000 HITs

● The majority decision was selected

● Concept Separation: “Which image best matches the description?”
● Visual Appeal: “Which image looks overall better or more natural?”
● Select a winning model or “no winner”
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Results | Quantitative
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“Which 
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Results | Quantitative

Concept Separation improvement by 117% on average 50

“Which 
output best 
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Results | Quantitative
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“Which output 
looks best?”



Results | Quantitative

Visual Appeal improvement by 63% on average
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“Which output 
looks best?”



Conclusion

● We tackle improper binding, where visual interpretation doesn’t 
match the prompt

● We propose SynGen, to improve image-text alignment
○ An inference-time method (no training or fine-tuning!)
○ Incorporates a linguistic-driven objective function to steer cross-attention
○ SOTA performance on all three datasets
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Take SynGen for a ride!

Thank you!

rassinroyi@gmail.com
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@RoyiRassin
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