

Linguistic Binding in Diffusion Models: Enhancing Attribute Correspondence through Attention Map Alignment

Royi

Eran Hirsch

Daniel Glickman

Shauli Ravfogel

Yoav Goldberg

Gal Chechik

A yellow flamingo and a pink sunflower

A yellow <u>flamingo</u> and a pink <u>sunflower</u>

2 entities

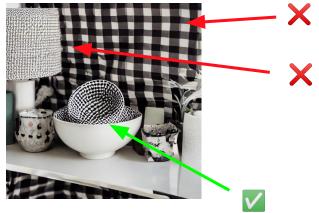
A <u>yellow flamingo</u> and a <u>pink</u> sunflower

2 modifiers

pink yellow A <u>yellow</u> flamingo and a <u>pink</u> sunflower

pink yellow A <u>yellow</u> flamingo and a <u>pink</u> sunflower

Leak "in" Prompt



A *horned* lion and a *spotted* monkey

A <u>horned</u> lion and a <u>spotted</u> monkey

A <u>horned</u> lion and a <u>spotted</u> monkey

A *horned* lion and a *spotted* monkey

Improper Binding | MidJourney-5

A <u>yellow</u> flamingo and a <u>pink</u> sunflower

a <u>checkered</u> bowl in a <u>cluttered</u> room a <u>horned</u> lion and a <u>spotted</u> monkey

Improper Binding | DALL-E 3

A <u>pink</u> sunflower and a <u>yellow</u> flamingo

a <u>checkered</u> bowl in a <u>cluttered</u> room a <u>horned</u> lion and a <u>spotted</u> monkey

Improper Binding | DALL-E 3

A <u>pink</u> sunflower and a a <u>checkered</u> bowl in a a <u>horned</u> lion and a <u>vellow</u> flamingo <u>cluttered</u> room <u>spotted</u> monkey

Why does it happen?

- The underlying model does not represent the relations between words
- The text encoder acts to a large extent as a bag of words

How do we solve this?

- Use parser to inject linguistic knowledge
- Uncover semantic constraints
- Enforce the constraints by intervening in the generation process

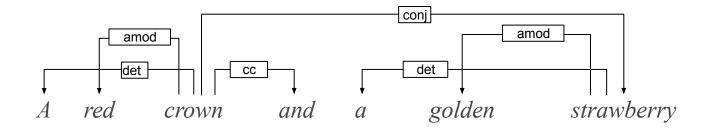
SynGen | Our goal

- We seek to fix all three leakage types
- In inference-time (no training or fine-tuning)

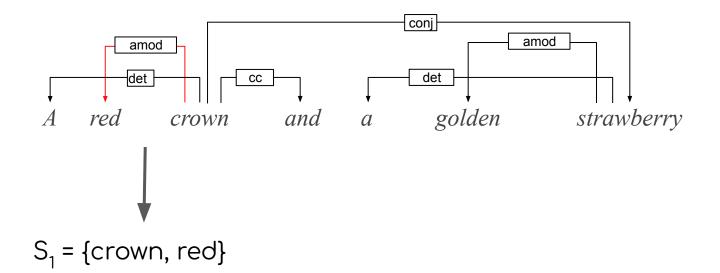
SynGen | Our approach

- Obtain the syntactic structure of the prompt
- Guide the diffusion on the prompt's syntax
- Steer the cross-attention using syntax in inference-time

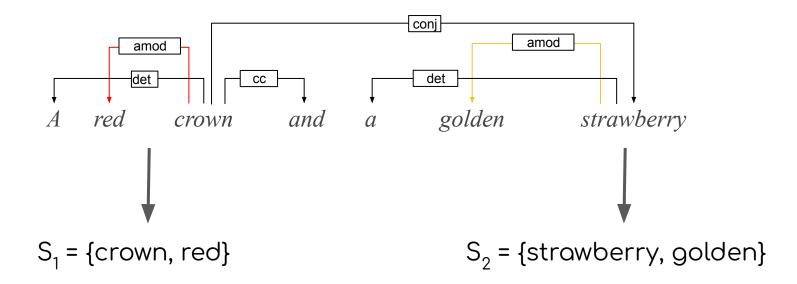
SynGen | Syntactic structure



SynGen | Syntactic structure



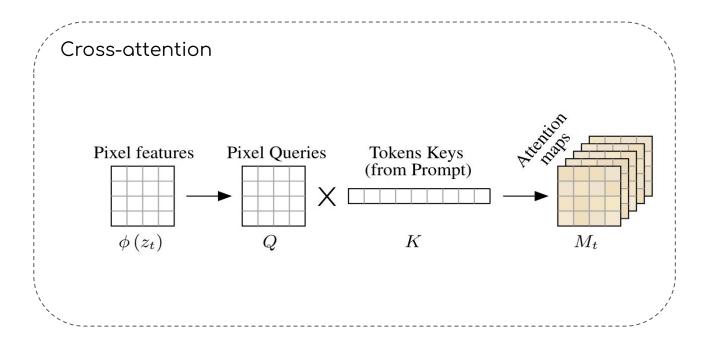
SynGen | Syntactic structure



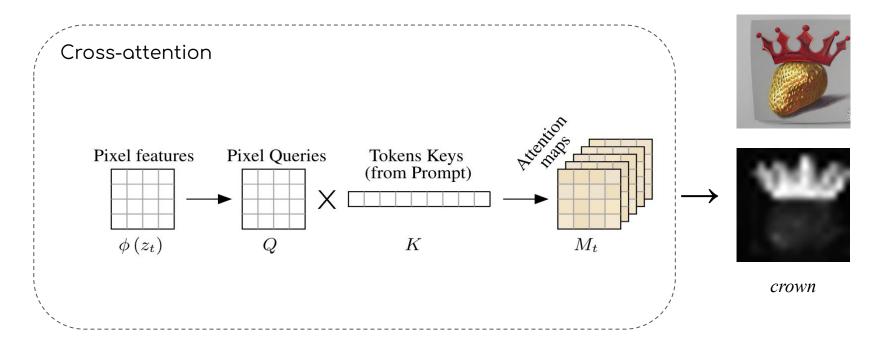
SynGen | Obtaining Cross Attention Maps



SynGen | Obtaining cross-attention maps



SynGen | Obtaining cross-attention maps



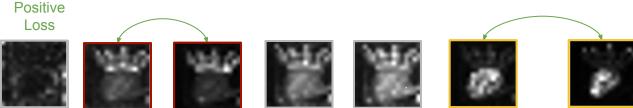
The figure is taken from "Prompt-to-Prompt Image Editing with Cross Attention Control"

SynGen | Aligning the denoising process

- Cross-attention maps are (token,patch) pairs and are derived from the latent
- We can define a loss that updates the latent (noise)

SynGen | Aligning the denoising process

- **Cross-attention maps** are (token,patch) pairs and are derived from the latent •
- We can define a loss that updates the latent (noise) •
 - encourage overlap of maps corresponding to entities and their modifiers 0



а

red

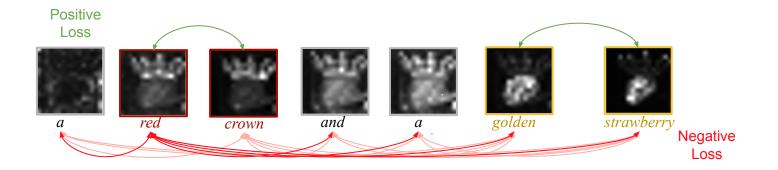
crown

and

а

SynGen | Aligning the denoising process

- Cross-attention maps are (token, patch) pairs and are derived from the latent
- We can define a loss that updates the latent (noise)
 - encourage overlap of maps corresponding to entities and their modifiers
 - discourage overlap with all other maps



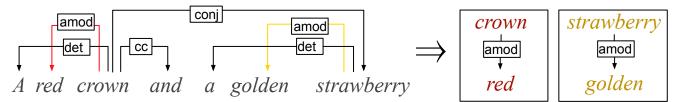
SynGen | Computing the loss

- Minimize distance over related (entity, modifier) pairs
 - Normalize maps
 - Compute Symmetric KL
- Maximize distance over non-related (entity, modifier) pairs
 - Normalize maps
 - Compute Symmetric KL
 - Negate result
- Adding the terms: L = L_{pos} + L_{neg}

SynGen | Workflow

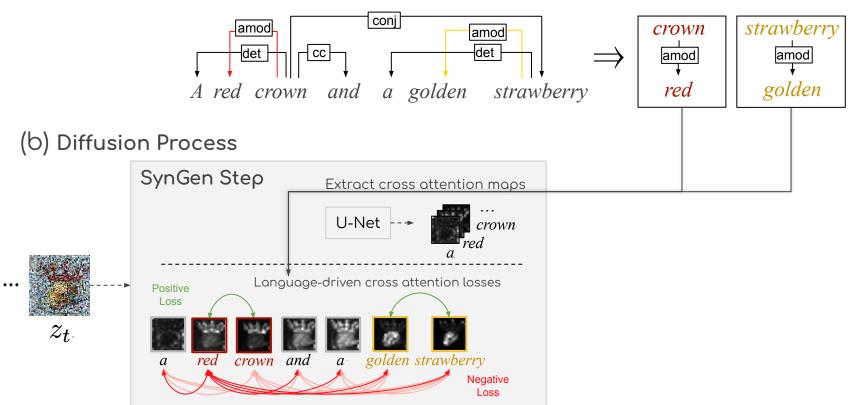
SynGen | Workflow

(a) Extract Entities and Modifiers



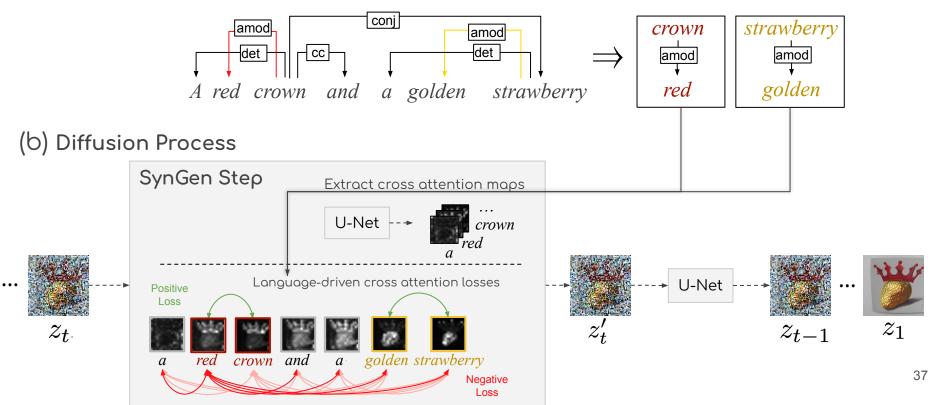
SynGen | Workflow

(a) Extract Entities and Modifiers

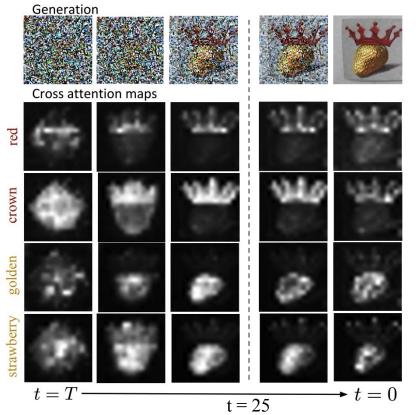


SynGen | Workflow

(a) Extract Entities and Modifiers



SynGen | Evolution of Cross-attention Maps



Prompt a <u>red</u> crown and a <u>aolden</u> strawberry

"A yellow flamingo and a pink sunflower"

Semantic Leak out of Prompt

"A checkered bowl in a cluttered room"

Attribute Neglect

"A yellow flamingo and a pink sunflower"

Semantic Leak out of Prompt

"A checkered bowl in a cluttered room"

Attribute Neglect

"A yellow flamingo and a pink sunflower"

Semantic Leak out of Prompt

"A checkered bowl in a cluttered room"

Attribute Neglect

"A yellow flamingo and a pink sunflower"

Semantic Leak out of Prompt

"A checkered bowl in a cluttered room"

Attribute Neglect

We compare our method to three baselines

We compare our method to three baselines

• Attend-and-Excite, StructureDiffusion, Stable Diffusion

We compare our method to three baselines

- Attend-and-Excite, StructureDiffusion, Stable Diffusion
- Across two existing datasets and a novel challenging one by us

We compare our method to three baselines

- Attend-and-Excite, StructureDiffusion, Stable Diffusion
- Across two existing datasets and a novel challenging one by us
- Using human raters on two metrics

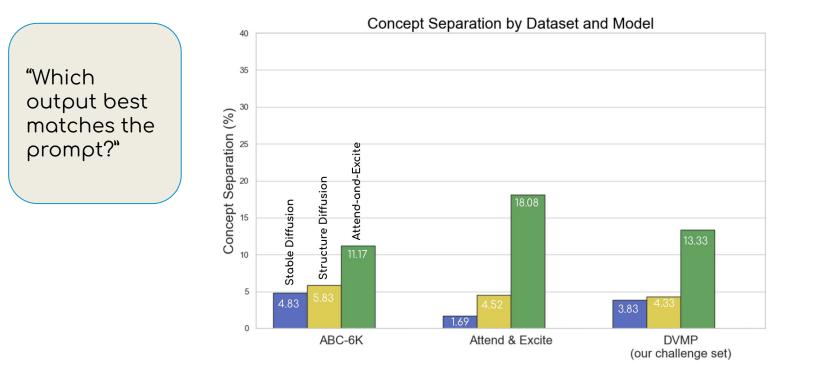
Experiments | Datasets

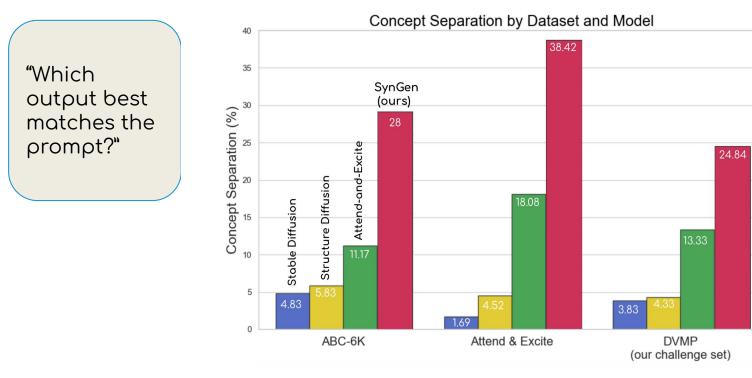
	ABC-6K	Attend-and-Excite	DVMP (ours)
Key Challenges	* Subset of MSCOCO (human authored)	* Entities are objects or animals	* More objects and animals
	* Contains contrastive examples	* Only colors as modifiers	* Many types of modifiers * Much harder sentences
Format	Free-form text	A {color-1} {entity-1} and a {color-2} {entity-2}	A {modifier-1} {entity-1} and a {modifier-2} {entity-2}
Examples	A <u>white fire</u> hydrant sitting in a field next to a <u>red</u> building	A monkey and a <u>black</u> bow	a <u>wooden crown</u> and a <u>furry</u> <u>baby</u> rabbit and a <u>pink metal</u> bench
# Examples	600	177	600

Experiments | Human Evaluation

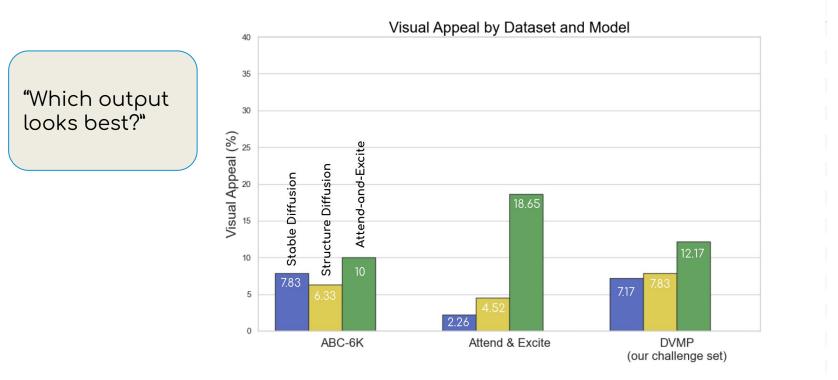
- Concept Separation: "Which image best matches the description?"
- Visual Appeal: "Which image looks overall better or more natural?"
- Select a winning model or "no winner"

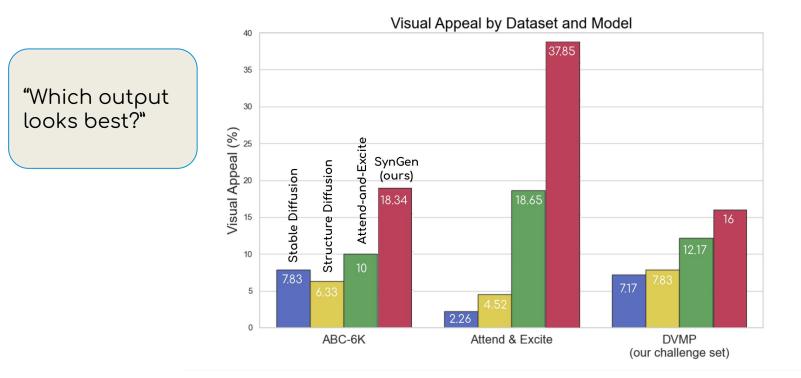
- Raters on Mechanical Turk
 - o 3 raters
 - \circ 100% on qualification test, \geq 99% approval, \geq 5000 HITs
- The majority decision was selected





Concept Separation improvement by 117% on average





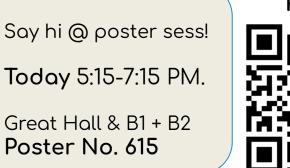
Visual Appeal improvement by 63% on average

Conclusion

• We tackle improper binding, where visual interpretation doesn't match the prompt

- We propose SynGen, to improve image-text alignment
 - An inference-time method (no training or fine-tuning!)
 - Incorporates a linguistic-driven objective function to steer cross-attention
 - SOTA performance on all three datasets

Take SynGen for a ride!



Thank you!

rassinroyi@gmail.com