# Training neural operators to preserve invariant measures of chaotic attractors THE UNIVERSITY OF CHICAGO Ruoxi Jiang\*, Peter Y. Lu\*, Elena Orlova, Rebecca Willett

# Background: Emulators for chaotic systems

**Goal**: Consider a chaotic dynamical system  $\frac{d\mathbf{u}}{dt} = G(\mathbf{u}, \phi)$  with an **unknown** governing equation G and a set of parameters  $\phi$  that specify an environment. We aim to approximate the dynamics with a data-driven emulator  $\hat{g}_{\theta}$ :

$$\hat{\mathbf{u}}_{t+\Delta t} := \hat{g}_{\theta}(\hat{\mathbf{u}}_t, \phi).$$

## Challenges:

- We are interested in a system where the unknown **chaotic G** is highly sensitive to initial conditions, and is impossible to exactly predicted over a long term.
- Noise exacerbates this unpredictability, and makes it difficult to train emulators.

### Our contributions:

- Optimal-transport (OT) based method to train emulators to match long-term known statistics characteristic of chaotic attractors.
- Contrastive learning (CL) based method to implicitly train emulators to match long-term unknown statistics of chaotic attractors.

# **Emulators trained with RMSE vs. invariant measures**



Figure 1. Training with RMSE loss yields emulators with very different statistical properties from the true chaotic system (e.g. more periodic), whereas **training with a** contrastive loss preserves the statistical properties of the chaotic system.



Figure 3. Impact of noise on various error metrics using ground truth simulations with increasingly noisy initial conditions  $\mathbf{U}_G(\mathbf{u}_0 + \eta)$  and added measurement noise  $\mathbf{U}_G(\mathbf{u}_0 + \eta) + \eta$ . Here,  $\mathbf{U}_G(\cdot)$  refers to the solution given an initial condition.

# **Neural Operator** Training $\mathbf{U}_{I+1:I+K}^{(n)} \longrightarrow \left| (2) \ \ell_{\mathrm{OT}} = \ell_{\mathrm{OT}} \left( \hat{\mathbf{S}}_{I:I+K}^{(n)}, \mathbf{S}_{I:I+K}^{(n)} \right) \right|$

-igure 2. Emulators are trained to take an initial state and output future states in a recurrent fashion.

### **RMSE** loss:

- While widely used for training emulators, RMSE does not capture long-term dynamics;
- Chaos and noise make the predictions of emulators trained with only RMSE degenerate quickly over time.

### Invariant measures:

- Can capture time-invariant statistical **behavior** of the true dynamics;
- Have a much more robust response to noise.

### Notations:

- Sequence of dynamics. A sequence of K + 1 consecutive time points on the trajectory coming from environments  $n = \{1, \ldots, N\}$  is  $\mathbf{U}_{I:I+K}^{(n)} := \{\mathbf{u}_{t_i}^{(n)}\}_{i=I}^{I+K}$ , where I is the beginning of the time interval.
- Time-invariant statistics. Any time-invariant statistical property S<sub>A</sub> of the dynamics on the attractor  $\mathcal{A}$  can be written as  $S_{\mathcal{A}} = \mathbb{E}_{\mu_{\mathcal{A}}}[s] = \int s(\mathbf{u}) \, \mathrm{d}\mu_{\mathcal{A}}(\mathbf{u}) = \lim_{T \to \infty} \frac{1}{T} \int^T s(\mathbf{u}_{\mathcal{A}}(t)) \, \mathrm{d}t$  for some function  $s(\mathbf{u})$  where  $\mu_A$  is a natural invariant probability measure of trajectroy in the basin of the attractor  $\mathcal{A}$ .





# 1st approach: Physics-informed optimal transport

We assume access to expert domain knowledge to define summary statistics  $s(u_t)$  representing physical property of the dynamical system. We aim to match the distributions of the statistics.



With discrete samples of statistics  $\mathbf{S}_{I:I+K} := {\mathbf{s}(\mathbf{u}_{t_i})}_{i=I}^{I+K}$ , we use the Sinkhorn algorithm [1] to efficiently solve the entropy regularized optimal transport problem,

$$\ell_{\rm OT}(\mathbf{S}, \hat{\mathbf{S}}) = \frac{1}{2} \left( W^{\gamma}(\mathbf{S}, \hat{\mathbf{S}})^2 - \frac{W^{\gamma}(\mathbf{S}, \mathbf{S})^2 + W^{\gamma}(\hat{\mathbf{S}}, \hat{\mathbf{S}})^2}{2} \right), \tag{1}$$

where  $W^{\gamma}(\mathbf{S}, \hat{\mathbf{S}})^2$  is the Wasserstein distance with an entropy regularization term (of the scale  $\gamma$ ) and squared cost matrix. Our final loss is:  $\ell(\theta) = \alpha \ell_{\text{OT}} + \ell_{\text{RMSE}}$ .

# 2nd approach: Contrastive feature learning

In absence of prior knowledge, we train an encoder  $f_{\psi}$  to capture time-invariant statistics.



### Key Premise:

- Sequences from the same trajectory have the same chaotic attractor, and so should have similar embeddings.
- Sequences from different trajectories corresponding to different chaotic attractors should have dissimilar embeddings

For contrastive feature loss, we use the cosine distance between a series of features of  $f_{\psi}$  [2]:

$$\ell_{\mathrm{CL}} ig( \mathbf{U}, \hat{\mathbf{U}}; f_{\psi} ig) := \sum_{l} \cos ig( f_{\psi}^{l} (\mathbf{U}) ig)$$

where  $f_{\eta}^{l}$  gives *l*-th layer feature output. Our final loss is:  $\ell(\theta) = \lambda \ell_{\text{CL}} + \ell_{\text{RMSE}}$ .

# Experiments

**Experimental setup.** We have noisy observations  $\mathbf{u}(t)$  with noise  $\eta \sim \mathcal{N}(0, r^2 \sigma^2 I)$ . Baselines. We consider the baseline as training with RMSE. Backbones. We use the Fourier neural operator [3].

Evaluation metrics.  
• Histogram error: 
$$Err(\hat{\mathbf{H}}, \mathbf{H}) := \sum_{l=1}^{B} ||c_b - \hat{c}_b||_1$$
, where  $\mathbf{H}$ 

**S**, and  $c_b$  is frequencies of the corresponding values of B bins.

- Energy spectrum error: <sup>1</sup>/<sub>T</sub>  $\mathbf{u}_t, \hat{\mathbf{u}}_t \in \mathbf{U}_{1:T}, \hat{\mathbf{U}}_{1:T}$
- Leading Lyapunov exponent (LE) error: The LE ( $\lambda$ ) measures how quickly the chaotic system becomes unpredictable. We report the relative absolute error as  $|\hat{\lambda} - \lambda|/|\lambda|$ .
- Fractal dimension (FD) error: FD (D) is a characterization of the dimension of the attractor. We report the absolute error as  $|\hat{D} - D|$ .

 $\mathbf{U}), f_{\eta/}^{l}(\hat{\mathbf{U}})),$ (2)

is a histogram of the invariant statistics

 $\frac{\||\mathcal{F}[\mathbf{u}_t]|^2 - |\mathcal{F}[\hat{\mathbf{u}}_t]|^2\|_1}{\||\mathcal{F}[\mathbf{u}_t]|^2\|_1}, \text{ where } \mathcal{F}[\cdot] \text{ is the spatial FFT.}$ 

| Lorenz-96 system    | $\frac{du^i}{dt} = (u^{i+1} - u^{i-2})$ |
|---------------------|-----------------------------------------|
| use 2000 training s | samples with each a                     |

| Training                                                                                                                           | Histogram↓   | Energy Spec. $\downarrow$ | Leading     |
|------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------|-------------|
| $ \begin{array}{c} \ell_{\rm RMSE} \\ \ell_{\rm OT} + \ell_{\rm RMSE} \\ \ell_{\rm CL} + \ell_{\rm RMSE} \end{array} \end{array} $ | 0.215        | 0.291                     | 0.44        |
|                                                                                                                                    | <b>0.057</b> | <b>0.123</b>              | 0.08        |
|                                                                                                                                    | 0.132        | 0.241                     | <b>0.06</b> |

Table 1. Performance on 1500-step predictions with noise scale r = 0.3.

| Training stats.                                 | Histogram↓            | Energy Spec. $\downarrow$ | Leading             |
|-------------------------------------------------|-----------------------|---------------------------|---------------------|
| $\mathbf{S}$ (full)<br>$\mathbf{S}_1$ (partial) | <b>0.057</b><br>0.090 | <b>0.123</b><br>0.198     | <b>0.08</b><br>0.26 |
| $\mathbf{S}_2$ (minimum)                        | 0.221                 | 0.221                     | 0.27                |

Table 2. Performance of OT method for different choices of summary statistics, r = 0.3: (1) full statistics  $\mathbf{S}(\mathbf{u}) := \{ \frac{du_i}{dt}, (u_{i+1} - u_{i-2})u_{i-1}, u_i \}; (2) \text{ partial statistics} \}$  $\mathbf{S}_1(\mathbf{u}) := \{ (u_{i+1} - u_{i-2})u_{i-1} \}; \text{ or (3) minimum statistics } \mathbf{S}_2(\mathbf{u}) := \{ \bar{\mathbf{u}} \},$ where  $\bar{\mathbf{u}}$  is the spatial average.

| Training                                                                                                                           | Histogram $\downarrow$ | Energy Spec. $\downarrow$ | Leading     |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------|-------------|
| $ \begin{array}{l} \ell_{\rm RMSE} \\ \ell_{\rm OT} + \ell_{\rm RMSE} \\ \ell_{\rm CL} + \ell_{\rm RMSE} \end{array} \end{array} $ | 0.255                  | 0.307                     | 0.45        |
|                                                                                                                                    | <b>0.055</b>           | <b>0.124</b>              | 0.08        |
|                                                                                                                                    | 0.130                  | 0.193                     | <b>0.03</b> |

Table 3. Emulator performance with reduced environment diversity with r = 0.3. We shrink the parameter range for generating the dataset from [10, 18] to [16, 18].

**Kuramoto–Sivashinsky (KS) equation**  $\frac{\partial u}{\partial t} = -u\frac{\partial u}{\partial x} - \phi\frac{\partial^2 u}{\partial x^2} - \frac{\partial^4 u}{\partial x^4}$ . We define  $\mathbf{s}(\mathbf{u}) := \left\{\frac{\partial u}{\partial t}, \frac{\partial u}{\partial x}, \frac{\partial^2 u}{\partial x^2}\right\}$ .

|                                                                                                                                    |                                |                                |                                | 0                                    | Truth                         | RMSE                          | OT (ours)                                             | CL (ours)                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------------|-------------------------------|-------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Training                                                                                                                           | Histogram ↓                    | Energy Spec.↓ L                | eading LE↓                     |                                      | 2                             | 20 -                          | 20 40                                                 | 20 -                                                                                                                                                                           |
| $ \begin{array}{l} \ell_{\rm RMSE} \\ \ell_{\rm OT} + \ell_{\rm RMSE} \\ \ell_{\rm CL} + \ell_{\rm RMSE} \end{array} \end{array} $ | 0.390<br><b>0.172</b><br>0.193 | 0.290<br>0.211<br><b>0.176</b> | 0.101<br><b>0.094</b><br>0.108 | Sampled traj                         |                               |                               | $\begin{array}{c} 60\\ 80\\ 100\\ 120\\ 0\end{array}$ | $\begin{array}{c} 60 \\ 80 \\ 100 \\ 120 \\ 0 \end{array} \begin{array}{c} 25 \\ 50 \end{array} \begin{array}{c} 75 \\ 75 \end{array} \begin{array}{c} 100 \\ 125 \end{array}$ |
| Table 4. <b>Per</b><br>with noise s                                                                                                | formance c<br>scale $r = 0$ .  | 3.                             | edictions                      | Histogram 2d $\partial u/\partial x$ |                               |                               |                                                       |                                                                                                                                                                                |
| 10 <sup>4</sup>                                                                                                                    |                                | OT (ours)                      |                                |                                      | $\partial u/\partial t$       | $\partial u/\partial t$       | $\partial u/\partial t$                               | $\partial u/\partial t$                                                                                                                                                        |
| 10 <sup>3</sup>                                                                                                                    | Water                          |                                |                                | Histogram 2d $\partial u/\partial x$ |                               |                               |                                                       |                                                                                                                                                                                |
| 100                                                                                                                                | 20 40                          | 60 80 100 120                  |                                |                                      | $\partial^2 u / \partial x^2$ | $\partial^2 u / \partial x^2$ | $\partial^2 u / \partial x^2$                         | $\partial^2 u / \partial x^2$                                                                                                                                                  |



Figure 5. Energy spectrum of the sampled dynamics.

- volume 26, Red Hook, NY, 2013. Curran Associates, Inc.
- vision and pattern recognition, 2018.
- [3] Z. Li et al. Fourier neural operator for parametric partial differential equations. In ICLR, 2021.





# Results

 $(2)u^{i-1} - u^i + F$ . Let  $\mathbf{s}(\mathbf{u}) := \{\frac{du^i}{dt}, (u^{i+1} - u^{i-2})u^{i-1}, u^i\}$ . We  $\phi^{(n)} \sim U([10.0, 18.0]).$ 



Figure 4. Sampled dynamics and summary statistics distributions.

Figure 6. Sampled dynamics and summary statistics distributions.

# References

[1] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems,

[2] Z. Richard et al. The unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on computer