

A self-supervised learning not objective explains the **modular** organization of grid cells σ

Mikail Khona @KhonaMikail (<u>mikail@mit.edu</u>) Rylan Schaeffer @RylanSchaeffer (<u>rylanschaeffer@gmail.com</u>)

IG

The grid cell system in the MEC

 Grid cells in the medial Entorhinal Cortex (mEC) keep track of allocentric location modulo a hexagonal lattice.

1m

The grid cell system in the MEC

- Grid cells in the medial Entorhinal Cortex (mEC) keep track of allocentric location modulo a hexagonal lattice.
- Different grid cells keep track of this information with respect to lattices of different phases and lattice spacings.
- Periodicity is arranged along dorso-ventral (DV) axis of mEC

 $\sigma^2(x)$

1m

Hafting et al. 2005

Stensola et al the Entorhinal grid map is discretized. Nature (2012)

The grid cell system in the MEC

- Grid cells in the medial Entorhinal Cortex (mEC) keep track of allocentric location modulo a hexagonal lattice.
- Different grid cells keep track of this information with respect to lattices of different phases and lattice spacings.
- Periodicity is arranged along dorso-ventral (DV) axis of mEC

1m

Hafting et al. 2005

Stensola et al, The entorhinal grid map is discretized. Nature (2012)

Supervised learning

Basis function optimization

Coding theory

We can use these insights to formulate a self-supervised learning SSL problem

This 'loop closure' property is needed for path integration

We can use these insights to formulate a self-supervised learning SSL problem

Separation

n₂

See also: Dorrell et al (2023)

We can use these insights to formulate a self-supervised learning SSL problem

less efficient use of neural space Capacity more efficient use of neural space

Extending the self-supervised learning SSL problem to spatial navigation

To create a trajectory, we sample T

To create a batch, we create B random permutations:

$$\mathbf{v} = \mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_T), ext{ with } \mathbf{v}_t \sim_{i.i.d.} p(\mathbf{v})$$

→X

Formulating a self-supervised learning SSL problem: loss functions

$$egin{split} \mathcal{D}_{ ext{gradient step}} &= \left\{ (\mathbf{v}_{\pi_b(1)}, \mathbf{v}_{\pi_b(2)}, ..., \mathbf{v}_{\pi_b(T)}), (\mathbf{g}_{\pi_b(1)}, \mathbf{g}_{\pi_b(2)}, ..., \mathbf{g}_{\pi_b(T)})
ight\}_{b=1}^B \ ext{ with shared initial state } \mathbf{g}_0 \end{split}$$

$$\expig(-rac{||{f g}_{\pi_{b'}(t)}-{f g}_{\pi_b(t')}||_2^2}{2\sigma_g^2}ig)$$

1 coarse grained bit of information about *relative*, and not absolute, spatial location

Contrast with supervised approaches that provide absolute spatial information at all times

Formulating a self-supervised learning SSL problem: architecture

 $W(\mathbf{v})$

$\mathbf{g}_t =$

Normalization of neural population activity: prevent trivial solutions often found by contrastive SSL

$$\sigma(w(\mathbf{v}_t) \, \mathbf{g}_{t-1})$$

$\sigma(\cdot) = Norm(ReLU(\cdot)) = ReLU(\cdot) / ||ReLU(\cdot)||$

Understanding Dimensional Collapse in Contrastive Self-supervised Learning. Jing et al (2021) What shapes the loss landscape of self-supervised learning? Liu et al (2023)

Result: It is *possible* to get multi-periodic grid-like solutions!

1m

Solutions generalize to larger environments and distinct input statistics without any additional training

Dissecting a single module shows key properties of grid cells

Sorscher*, Mel* et al (2023)

When does a multi-periodic solution NOT appear?

Still see 1 perfect module of grids! capacity loss ablation Min: 0.000 Min: 0.000 ۲ • 0 ۲ ۰ Θ ۰ Max: 0.350 Min: 0.000 Min: 0.000 ۲ \mathbf{O} \bullet 0 ۲ \bigcirc ۲ ۲ \bullet 0 \bullet • \mathbf{O} 0 \mathbf{O} \bullet • \bullet ۲ 0 • Max: 0.002 Max: 0.109 ۲ ۲ • 0 ۲ Min: 0.000 Min: 0.000 ۲ ۲ • ۲ • ۰ 0 0 ۲ ۲ 0 • ۲ 0 ۲ • Max: 0.003 0 ۲ 0 Min: 0.000 Min: 0.000 • ۲ 0 ۲ \mathbf{O} • •

trajectory permutations ablation

Unit: 64

Max: 0.229

Min: 0.000

Unit: 72 Max: 0.207 Min: 0.000

Unit: 63

Max: 0.277

Min: 0.000

۰.

Unit: 73

Max: 0.273

Min: 0.000

* Unit: 74 Max: 0.260 Min: 0.000

Max: 0.181 Min: 0.000

Max: 0.192 Min: 0.000

Unit: 65 Max: 0.270 Min: 0.000 ۰

Unit: 75 Max: 0.234 Min: 0.000

Unit: 85 Max: 0.282 Min: 0.000

Unit: 95 Max: 0.200 Min: 0.000

Unit: 66 Max: 0.270 Min: 0.000 •**`**•

Unit: 76 Max: 0.221 Min: 0.000

Unit: 86 Max: 0.293 Min: 0.000

Unit: 96 Max: 0.115 Min: 0.000

Max: 0.060 Min: 0.000

Unit: 62

Min: 0.000

Unit: 82 Max: 0.065 Min: 0.000 diam'r

Unit: 92 Max: 0.058 Min: 0.000

Unit: 63

Max: 0.061

Min: 0.000

Unit: 73

Max: 0.062

Min: 0.000

Unit: 83

Max: 0.058

Min: 0.000

dia.

Max: 0.069 Min: 0.000

path invariance loss ablation

Unit: 65

Max: 0.070

Min: 0.000

Unit: 75

Max: 0.064

Min: 0.000

Unit: 85

Max: 0.067

Unit: 74 Max: 0.074 Min: 0.000

Unit: 84 Max: 0.071 Min: 0.000

Unit: 94 Max: 0.066 Min: 0.000

Unit: 95 Max: 0.069 Min: 0.000

Unit: 66

Max: 0.056

Min: 0.000

Min: 0.000

Unit: 86

Unit: 96 Max: 0.045

separation loss ablation

Unit: 65

Max: 0.000

Min: 0.000

Unit: 73 Max: 0.000 Min: 0.000

Unit: 63

Unit: 83 Max: 0.087 Min: 0.000

Min: 0.000

Unit: 75 Max: 0.000 Min: 0.000

Unit: 85 Max: 0.091 Min: 0.000 -----

Unit: 95 Max: 0.000 Min: 0.000

100

Max: 0.000 Min: 0.000

100

Unit: 93 Max: 0.000 Min: 0.000

Unit: 94 Max: 0.234 Min: 0.000

100

Unit: 84

100

- Rose

Max: 0.127

Min: 0.000

0

-

Unit: 86 Max: 0.203 Min: 0.000

Unit: 67

Max: 0.000

Min: 0.000

Thank you

Mikail Khona @KhonaMikail -(mikail@mit.edu) Rylan Schaeffer @RylanSchaeffer (rylanschaeffer@gmail.com)

Self-Supervised Learning of Representations for Space Generates Multi-Modular Grid Cells, NeurIPS 2023

Path Invariance

MCGOVERN

K. LISA YANG ICoN CENTER

Stanford ENGINEERING **Computer Science**

