
Mitigating the effect of Incidental 
correlations on part-based learning



The problem of Incidental Correlations

● Some specific configuration or background could dominate the training data:

○ This could lead towards bias towards those configurations.

● These configurations may not be spurious or anti-causal:

○ They provide relevant context for identifying parts.



Effect of Incidental correlations on Part-learners

● Reduces interpretability of learned parts.
● Reduces generalization of part 

representations.



Effect of Incidental correlations on Part-learners

● Reduces interpretability of learned parts.
● Reduces generalization of part 

representations.

(a) Visualization of learned parts

● Degeneracy of parts on a common solution.
● Less diversity among the learned part 

representations.



Limitations of existing works

● Current SOTA part-learners suffers from the problem of incidental correlations:
○ [1] Concept Vision Transformers (CViT), ICLR 2022
○ [2] CORL, WACV 2023
○ [3] ConstellationNet, ICLR 2021

● Does not enforce strict regularization to enforce diversity among the parts:
○ [4] CompoNet, ICCV 2019
○ [5] TUSK, ICCV 2021
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Our method: DPViT (Pretraining phase)
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DPViT : Compute distance maps using randomly initialized part dictionary 
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DPViT : Use MSA and MCA layers to form transformer encoder



DPViT pretraining : Quality assurance regularization

● Construct foreground and background latent variables to form mixture-of-parts 
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DPViT pretraining : Quality assurance regularization

● Construct foreground and background latent variables to form mixture-of-parts 

● Compute the mixture loss on weakly-supervised foreground-background masks

● Enforce sparsity on parts        , while orthogonal spectral norm on 



DPViT: Background Invariant fine-tuning phase

ⵙ

Invariant Feature Learning

Invariant Parts Learning



Experiments, Results and 
Discussion



How do incidental correlations affect interpretability of part learners?



Studying the quality of learned part representations



Generalization to limited data: Few-shot learning



Studying impact of incidental correlations on IN9 benchmark



Conclusion and future work

● Dependent on weakly supervised off-the-shelf foreground extractor to guide the training.

○ Could be challenging to train in problem-specific datasets sometimes found in medical 

disease domain.

● DPViT does not consider the relationship among the parts.

○ Relationship among the parts could results in interesting properties useful for tasks such 

as scene graph generation.
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