

Mitigating the effect of Incidental correlations on part-based learning

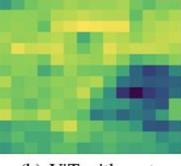
Gaurav Bhatt*13, Deepayan Das², Leonid Sigal¹³, Vineeth N Balasubramanian ²

¹The University of British Columbia, ²Indian Institute of Technology Hyderabad ³ The Vector Institute, Canada

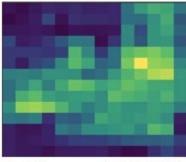
THE UNIVERSITY OF BRITISH COLUMBIA

The problem of Incidental Correlations

(a) Input image



(b) ViT with parts



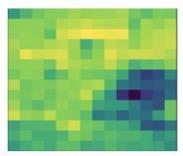
(c) Proposed - DPViT

- Some specific configuration or background could dominate the training data:
 - This could lead towards bias towards those configurations.
- These configurations may not be spurious or anti-causal:
 - They provide relevant context for identifying parts.

Effect of Incidental correlations on Part-learners

- Reduces interpretability of learned parts.
- Reduces generalization of part representations.

(a) Input image

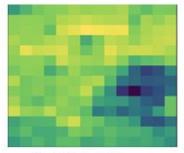


(b) ViT with parts

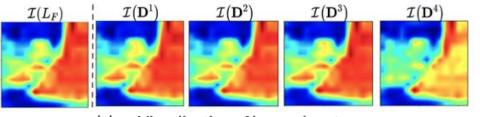
Effect of Incidental correlations on Part-learners

- Reduces interpretability of learned parts.
- Reduces generalization of part representations.

(a) Input image



(b) ViT with parts



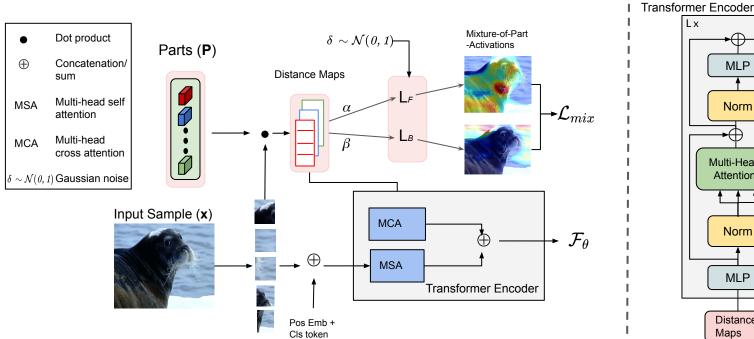
(a) Visualization of learned parts

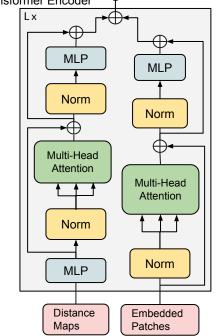
- Degeneracy of parts on a common solution.
- Less diversity among the learned part representations.

Limitations of existing works

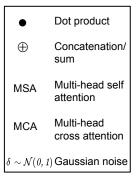
- Current SOTA part-learners suffers from the problem of incidental correlations:
 - [1] Concept Vision Transformers (CViT), ICLR 2022
 - [2] CORL, WACV 2023
 - o [3] ConstellationNet, ICLR 2021
- Does not enforce strict regularization to enforce diversity among the parts:
 - [4] CompoNet, ICCV 2019
 - [5] TUSK, ICCV 2021

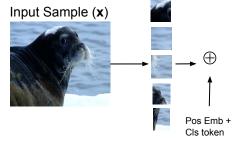
Our method: DPViT (Pretraining phase)



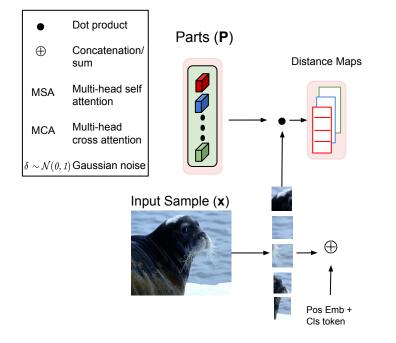


DPViT : Patch generation from the input image

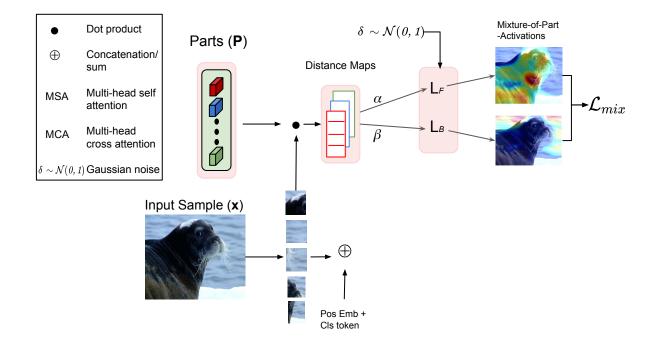




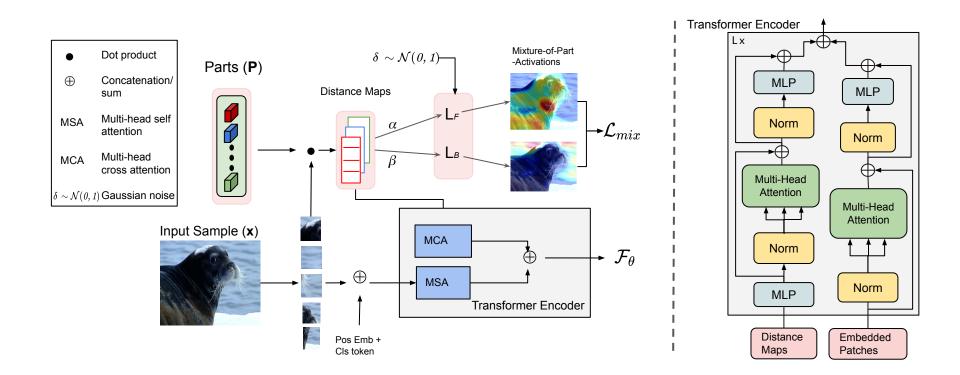
DPViT : Compute distance maps using randomly initialized part dictionary



DPViT : Compute \mathcal{L}_{mix} (mixture-of-parts) using L_F & L_B



DPVIT : Use MSA and MCA layers to form transformer encoder



DPViT pretraining : Quality assurance regularization

• Construct foreground and background latent variables to form mixture-of-parts

$$L_F = \sum_{k \in n_f} \alpha_k \mathbf{D}^k + \delta_f; L_B = \sum_{k \in n_b} \beta_k \mathbf{D}^k + \delta_b$$

DPViT pretraining : Quality assurance regularization

• Construct foreground and background latent variables to form mixture-of-parts

$$L_F = \sum_{k \in n_f} \alpha_k \mathbf{D}^k + \delta_f; L_B = \sum_{k \in n_b} \beta_k \mathbf{D}^k + \delta_b$$

• Compute the mixture loss on weakly-supervised foreground-background masks

$$\mathcal{L}_{mix} = ||\mathcal{I}(L_F) - \mathcal{M}_f||_2 + ||\mathcal{I}(L_B) - \mathcal{M}_b||_2$$

DPViT pretraining : Quality assurance regularization

• Construct foreground and background latent variables to form mixture-of-parts

$$L_F = \sum_{k \in n_f} \alpha_k \mathbf{D}^k + \delta_f; L_B = \sum_{k \in n_b} \beta_k \mathbf{D}^k + \delta_b$$

• Compute the mixture loss on weakly-supervised foreground-background masks

$$\mathcal{L}_{mix} = ||\mathcal{I}(L_F) - \mathcal{M}_f||_2 + ||\mathcal{I}(L_B) - \mathcal{M}_b||_2$$

• Enforce sparsity on parts (${f P}$), while orthogonal spectral norm on ${f P_F}$ & ${f P_B}$

$$\mathcal{L}_Q(\lambda_s, \lambda_o) = \lambda_s ||\mathbf{P}||_1 + \lambda_o \Big[\sigma \big(\mathbf{P}_{\mathbf{F}} \cdot \mathbf{P}_{\mathbf{F}}^T - \mathbf{I} \big) + \sigma \big(\mathbf{P}_{\mathbf{B}} \cdot \mathbf{P}_{\mathbf{B}}^T - \mathbf{I} \big) \Big]$$

DPViT: Background Invariant fine-tuning phase



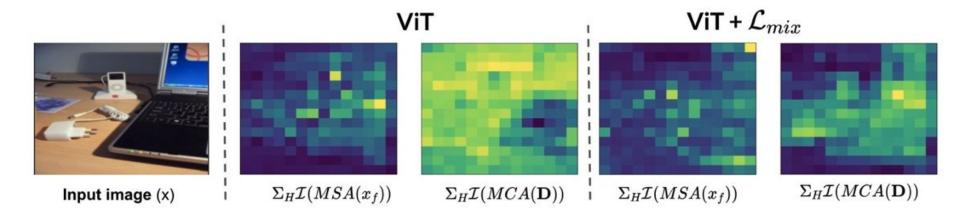
Invariant Feature Learning

$$\mathcal{L}_{cls}^{inv} = \mathcal{L}_{ce}(\mathcal{F}_{\phi}^t(\mathcal{F}_{\theta}^t(x)), \mathcal{F}_{\phi}^s(\mathcal{F}_{\theta}^s(x_f)))$$

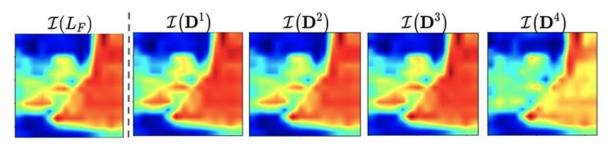
Invariant Parts Learning $\mathcal{L}_p^{inv} = \mathcal{L}_{ce}(L_F^t(x), L_F^s(x_f))$

Experiments, Results and Discussion

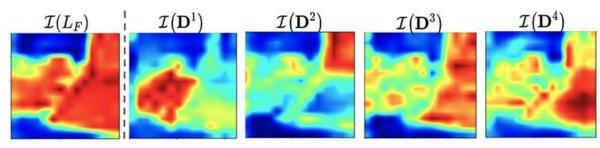
How do incidental correlations affect interpretability of part learners?



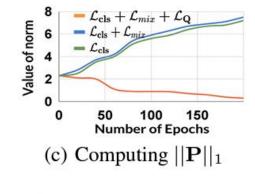
Studying the quality of learned part representations

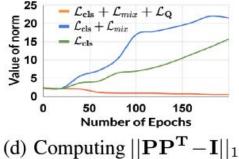


(a) Visualizing heatmaps of part projections using ViT+ \mathcal{L}_{mix}



(b) Visualizing heatmaps of part projections using ViT+ $\mathcal{L}_{mix} + \mathcal{L}_Q$





Generalization to limited data: Few-shot learning

			MiniImageNet		TieredImageNet		FC100	
Method		Backbone	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
ProtoNets (2017) [47]		ResNet12	$60.39_{\pm 0.16}$	$78.53_{\pm 0.25}$	$65.65_{\pm 0.92}$	$83.40_{\pm 0.65}$	$37.50_{\pm 0.60}$	$52.50_{\pm 0.60}$
DeepEMD v2 (2020) [57]		ResNet12	$68.77_{\pm 0.29}$	$84.13_{\pm 0.53}$	$71.16_{\pm 0.87}$	$86.03_{\pm 0.58}$	$46.47_{\pm 0.26}$	$63.22_{\pm 0.71}$
COSOC (2021) [32]		ResNet12	$69.28_{\pm 0.49}$	$85.16_{\pm 0.42}$	$73.57_{\pm 0.43}$	$87.57_{\pm 0.10}$	-	-
MixtFSL (2021) [1]		ResNet12	63.98 ± 0.79	$82.04_{\pm 0.49}$	$70.97_{\pm 1.03}$	86.16 ± 0.67	-	=
Match-feat (2022) [2]		ResNet12	$68.32_{\pm 0.62}$	$82.71_{\pm 0.46}$	$71.22_{\pm 0.86}$	$85.43_{\pm 0.55}$	-	-
Label-Halluc (2022) [24]		ResNet12	$67.04_{\pm 0.70}$	$85.87_{\pm 0.48}$	$71.97_{\pm 0.89}$	$86.80_{\pm 0.58}$	$47.37_{\pm 0.70}$	$67.92_{\pm 0.70}$
FeLMi (2022) [44]		ResNet12	$67.47_{\pm 0.78}$	$86.08_{\pm 0.44}$	$71.63_{\pm 0.89}$	$87.07_{\pm 0.55}$	$49.02_{\pm 0.70}$	68.68 ± 0.70
SUN (2022) [10]		VIT	$67.80_{\pm 0.45}$	$83.25_{\pm 0.30}$	$72.99_{\pm 0.50}$	86.74 ± 0.33	-	-
FewTure (2022) [23]		Swin-Tiny	$72.40_{\pm 0.78}$	$86.38_{\pm 0.49}$	$76.32_{\pm 0.87}$	$89.96_{\pm 0.55}$	47.68 ± 0.78	$63.81_{\pm 0.75}$
HCTransformer (2022) [22]		$3 \times \text{VIT-S}$	74.74 $_{\pm 0.17}$	$89.19_{\pm 0.13}$	79.67 ±0.20	$91.72_{\pm 0.11}$	$48.27_{\pm 0.15}$	$66.42_{\pm 0.16}$
SMKD (2023) [30]		VIT-S	$74.28_{\pm 0.18}$	$88.82_{\pm 0.09}$	$78.83_{\pm 0.20}$	$91.02_{\pm 0.12}$	$50.38_{\pm 0.16}$	$68.37_{\pm 0.16}$
ConstNet (2021) [54]		ResNet12	$64.89_{\pm 0.23}$	$79.95_{\pm 0.17}$	$70.15_{\pm 0.76}$	$86.10_{\pm 0.70}$	$43.80_{\pm 0.20}$	$59.70_{\pm 0.20}$
TPMN (2021) [52]	S	ResNet12	$67.64_{\pm 0.63}$	$83.44_{\pm 0.43}$	72.24 ± 0.70	86.55 ± 0.63	$46.93_{\pm 0.71}$	$63.26_{\pm 0.74}$
CORL (2023) [21]	art	ResNet12	$65.74_{\pm 0.53}$	$83.03_{\pm 0.33}$	$73.82_{\pm 0.58}$	$86.76_{\pm 0.52}$	44.82 ± 0.73	$61.31_{\pm 0.54}$
VIT-with-parts (L_{cls}) Ours - DPViT	- P	VIT-S VIT-S	$\begin{array}{c} 72.15_{\pm 0.20} \\ 73.81_{\pm 0.45} \end{array}$	$\begin{array}{c} 87.61_{\pm 0.15} \\ \textbf{89.85}_{\pm 0.35} \end{array}$	$78.03_{\pm 0.19} \\ 79.32_{\pm 0.48}$	$\begin{array}{c} 89.08_{\pm 0.19} \\ \textbf{91.92}_{\pm 0.40} \end{array}$	$\begin{array}{c} 48.92_{\pm 0.13} \\ \textbf{50.75}_{\pm 0.23} \end{array}$	$\begin{array}{c} 67.75_{\pm 0.15} \\ \textbf{68.80}_{\pm 0.45} \end{array}$

Studying impact of incidental correlations on IN9 benchmark

(a) Original

(b) MIXED-SAME

(c) MIXED-RAND

Figure 8: Visualizing the test splits from ImageNet-9 dataset.

Method	IN-9L↑	Original \uparrow	M-SAME ↑	M-RAND ↑	BG-GAP↓	
ResNet-50 [53]	94.6	96.3	89.9	75.6		
WRN-50×2 [53]	95.2	97.2	90.6	78.0	12.6	
ConstNet	90.6	92.7	86.1	69.2	17.1	
ViT-S pre [11]	82.5	84.9	72.2	50.3	21.9	
CT [41]	84.7	85.5	73.1	51.5	21.6	
VIT-with-parts	95.1	97.2	91.5	81.7	9.8	
Ours - DPViT	96.9	98.5	93.4	87.5	5.9	

Table 2: Performance evaluation on domain shift of varying background and common data corruptions on ImageNet-9. Evaluation metric is Accuracy %.

Conclusion and future work

- Dependent on weakly supervised off-the-shelf foreground extractor to guide the training.
 - Could be challenging to train in problem-specific datasets sometimes found in medical disease domain.
- DPViT does not consider the relationship among the parts.
 - Relationship among the parts could results in interesting properties useful for tasks such as scene graph generation.

Acknowledgements:

THE UNIVERSITY OF BRITISH COLUMBIA

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

[1] Rigotti, Mattia, et al. "Attention-based interpretability with concept transformers." *ICLR*. 2022.

[2] He, Ju, Adam Kortylewski, and Alan Yuille. "CORL: Compositional representation learning for few-shot classification." *WACV*. 2023.

[3] Xu, Weijian, Huaijin Wang, and Zhuowen Tu. "Attentional constellation nets for few-shot learning." ICLR 2021.

[4] Tokmakov, Pavel, Yu-Xiong Wang, and Martial Hebert. "Learning compositional representations for few-shot recognition." *ICCV.* 2019.

[5] Wu, Jiamin, et al. "Task-aware part mining network for few-shot learning." ICCV. 2021.