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Problem Formulation

* Bayesian optimization (BO) is a powerful framework for the query-efficient optimization of
costly-to-evaluate black-box objective functions. Standard BO assumes that all variables in

a query X are controllable by the learner.

* However, in many real-world optimization problems, some of the query variables may be
subject to randomness affecting their values.

* |n some cases, the randomness affecting a specific variable can be eliminated (by allowing
the learner to select its value), but at a cost.



Problem Formulation

* Motivating example: In precision agriculture, consider a farm aiming to find the optimal
conditions for largest crop yield where the query variables are a set of soil nutrient
concentrations (e.g., calcium, potassium):

* The farm may rely on the naturally-occurring quantities of these nutrients in the available soil, but these
quantities will be randomly sampled;

* alternatively, they may control some subset of these quantities (via manufactured soil and fertilizers) at a
higher cost.

* General optimization problem: At each query iteration, the learner is faced with the
challenges of

* deciding which variables to specify (for more directed learning) vs. which variables to allow to be randomly
sampled (to reduce incurred costs to avoid exceeding a given budget);

* in addition to the usual optimization problem of deciding the specified variables' values.
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Available control sets:
e Control set 1: choose 1stvariable
Iteration ¢:  Control set 2: choose 1stand 2"9variables Iteration ¢ + 1:

1 1
2 2

Tt 1 Lt41,1 Lt+4+1,2
Learner chooses control set 7; = 1 _ 1. Learnerchooses control set 7411 = 2
Learner chooses value of 15t variable x"* = (x41) 2. Learner chooses value of 15t and 2"
Environment randomly samples 2" and 3 variables X""*' = (Ty41.1, Tt+1,2)
variables X" = (X, o, X} 3) 3. Environmentrandomly samples 3™
Learner pays cost ¢; for choosing the 15t variable X7 """ = (X411 3)
control set 4. Learner pays cost ¢, for choosing the 2"

control set



Optimization Objective

* The learner seeks the optimal control set and the optimal partial query associated with
that control set, defined as

(i*,x* ) == argmax E[f(x",X7"])]
(i,x*)E[mM]x X?

* Every control seti has an associated cost ¢;. The learner has a limited budget C, and each
query in a BO iteration expends c; depending on the control set chosen in that iteration.



Algorithm

ldea: use cheap (and likely more random) control sets for exploration and use
expensive (and likely more deterministic) control sets for exploitation.

Algorithm 1 UCB-CVS

1: Input: GP with kernel k, budget C, control sets Z, costs (¢;)™ ;, e-schedule (&),

=1| ldea achieved with

2: for iterationt = 1 to oo do

3: gy = max(ijxi)e[m]x,w E[utfl([xi, X*l])} decreaSing E'SChedUle
4: 8= {i € [m] | maxyicxi Efui— ([x", X7))] + & > g¢}

5: S = {@ €S | C; = minjegl Cj}

6:  (iy,x") = argmax; i s, xi Blu—1([x", X7)]

7. breakif C — S\ ¢ < ¢,

8:  Observe x 't drawn from P~ %

9:  Observe y; == f(x¢) + &
10: D, = {(X’ray'r)}trzl
11: end for

12: return D;
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IS A A

Compute the maximum expected upper confidence bound (UCB) value g, across all control sets.
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Compute the maximum expected upper confidence bound (UCB) value g; across all control sets.
Collectinto the set §; every control set i that, after an ¢, relaxation, attains g;.
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ldea: use cheap (and likely more random) control sets for exploration and use
expensive (and likely more deterministic) control sets for exploitation.

Algorithm 1 UCB-CVS
1: Input: GP with kernel k, budget C, control sets Z, costs (¢;)™ ;, e-schedule (&),
2: for iteration t = 1 to co do ‘ _
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9:  Observe y; == f(x¢) + &
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e A

1. Compute the maximum expected upper confidence bound (UCB) value g; across all control sets.
2. Collectinto the set §; every control set i that, after an €, relaxation, attains g;.
3. Retain only the cheapest control set(s).
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Algorithm

ldea: use cheap (and likely more random) control sets for exploration and use
expensive (and likely more deterministic) control sets for exploitation.

Algorithm 1 UCB-CVS
1: Input: GP with kernel k, budget C, control sets Z, costs (¢;)™ ;, e-schedule (&),
2: for iteration t = 1 to oo do ‘ _
3: gt = Max(; xiye[m]x X E[utfl([xzvxil])}

S = {i € [m] | maxyicxi Elu—i (x5, X)) + & > g:}

S = {@ €S | C; = minjegl Cj}

(1, X"t) = argmax; yiyes, vt E|t—1([x", X 7))

break if C — >\ ¢i. < ¢,

Observe x*¢ drawn from P~ %

9:  Observe y; == f(x¢) + &

10: D, = {(X’ray'r)}trzl
11: end for
12: return D;

e A

Compute the maximum expected upper confidence bound (UCB) value g; across all control sets.
Collectinto the set §; every control set i that, after an ¢, relaxation, attains g;.

Retain only the cheapest control set(s).

Among the control sets remaining, choose the one that attains the maximum expected UCB value "
and query the maximizing partial query.



Theoretical Analysis

In the paper, we show:

1.
2.

Conditions on the e-schedule under which UCB-CVS incurs sublinear regret.

How the availability of cheaper control sets and the distributions of the uncontrolled
random variables affect regret.
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Experiments Analysis

Experimental results suggest:

1.

UCB-CVS variants outperform TS-PSQ and UCB-PSQ under cheap/moderate costs when
the full query control set is available.

Cost-adaptive UCB-CVS (ETC-Ada) can maintain competitive performance under
expensive costs.

Non-cost-adaptive TS-PSQ and UCB-PSQ perform relatively well when the control sets
are not subsets of each other.

Increasing the variance of the probability distributions has competing effects on the
simple regret.

Simple score-per-cost extensions of TS-PSQ, UCB-PSQ, and El adapted for BOPSQ that
simply divide acquisition score of a control set by its cost do not work well.
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Summary

Introduce the BOCVS problem;

Solve the BOCVS problem by designing a novel UCB-based algorithm with a theoretical
analysis of its properties;

Empirically evaluate the performance of our proposed algorithm against suitable baselines
under several experimental settings with synthetic and real-world datasets.
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