

Provable Guarantees for Neural Networks via Gradient Feature Learning

Zhenmei Shi*, Junyi Wei*, Yingyu Liang

UW-Madison

NeurIPS 2023

Recent Work on Optimization of NNs

Why neural networks success?

- Neural Tangent Kernel (NTK regime or lazy learning regime):
 - Key idea: with heavy overpara, in a close neighborhood of random init, the optimization is <u>almost convex</u>
 - Limitation: impractical overpara; generalization only for simple datasets; approximately a kernel method (fixed feature, <u>no feature learning</u>)
- Feature learning beyond NTK
 - Key idea: on data with specific structure, the training algo exploits the structure to <u>learn specific features</u> as the neuron weights
 - Can handle problems that cannot be handled by fixed feature methods
 - Limitation: <u>specific data</u> (mixture of Gaussians, parity etc)

Recent Work on Optimization of NNs

Why neural networks success?

• Neural Tangent Kernel (NTK regime or lazy learning regime):

Can we provide a more general analysis framework? 1. for more general data 2. Pin down the principle of feature learning in practical algo

Key idea: on data with specific structure, the training algo exploits the **Yes for two-layer networks** as the neuron weights Can handle problems that cannot be handled by fixed feature methods Limitation: specific data (mixture of Gaussians, parity etc)

Intuition

(c)

Gradient captures useful features of data These features as neuron weights can lead to good performance

	Lipstick	Eyebrows	5 o'clock shadow	Necktie	Smiling	Rosy Cheeks
Deep Network Feature Matrix: $W_1^T W_1$	1	19 10		10	*	17
RFM Feature Matrix: $\sum_{i=1}^{n} abla f(x_i) abla f(x_i)^T$	19 A	(A)		a al	4	12
Correlation	0.999	0.999	0.999	0.999	0.999	0.999
Deep Network Test Acc.	90.53%	75.71%	85.88%	88.77%	89.83%	87.22%
RFM-T Test Acc.	91.62%	78.11%	88.18%	90.39%	91.24%	88.72%

Top Eigenvector of Feature Matrices on CelebA Prediction Tasks

Visualization of Gradient Feature vs Weight Feature. From: Feature learning in neural networks and kernel machines that recursively learn features (2022).

Gradient Features

• Gradient Features as neuron weights can lead to good performance

Gradient Feature Induced Networks

- Gradient Features as neuron weights can lead to good performance
- Induced networks: networks using gradient features as neuron weights
- Optimal approximation using induced networks:

Definition (Optimal Approximation via Gradient Features)

The Optimal Approximation network and loss using gradient feature induced networks $\mathcal{F}_{d,r,B_F,S}$ are defined as:

$$f^* := \operatorname{argmin}_{f \in \mathcal{F}_{d,r,B_F,S}} L_{\mathcal{D}}(f), \qquad \mathsf{OPT}_{d,r,B_F,S} := \min_{f \in \mathcal{F}_{d,r,B_F,S}} L_{\mathcal{D}}(f).$$
(6)

Unified Analysis Framework for Two-Layer NNs

Main Theorem (informal)

Two-layer networks can in poly-time w.h.p. achieve test loss close to the optimal approximation loss by Gradient Feature Induced Networks.

General framework that

- 1. captures the feature learning from gradients (any data), and
- 2. gives poly error bounds for prototypical problems (beyond NTK)

Applications of the Framework

- Case studies on prototypical problems:
 - Mixtures of Gaussians
 - Parity functions
 - Linear data
 - Multiple-index data models + polynomial labeling functions
- Explaining some intriguing empirical phenomena
 - Beyond the Kernel Regime
 - Simplicity Bias
 - Lottery Ticket Hypothesis
 - Learning over Different Data Distributions
 - New Perspectives about Roadmaps Forward