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An example of in-context learning behavior

‘ l[abel:[chal:[#6%]:2 V4

The relationship between the first
two terms is that they are the same
letters in reverse order. Therefore, the
answer to the analogy is $ & #.

The model has likely never been trained on this particular sequence,
but it manages to recall and use the abstraction of reversing a list.



Sequence modeling with Clone-Structured Causal Graphs (CSCGs)

George et. al. Nature Communications 2021

“One robber eating at
river resort” ..

The model uses latent states to disambiguate different
contexts for the same token, and then learns transitions
between these latent states.

Multiple latent states a.k.a. “clones”
bound to the same token

z, % Hidden markov model

O clones
o tokens O 0O 0 O O 0O 0 O

tokens

with deterministic emission matrix
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When trained on an example of list reversal

[ ABCDE ] [ EDCBA]

\
How can the same model be applied to a novel prompt? T:T:TTTTT:T:
[ PQRST] [TSRQ?]

[ ABCDE ]
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Preserve the pattern of flow between latent states as a “schema”



Rebinding enables a sequence model to represent abstractions

When trained on an example of list reversal
[ ABCDE] I [EDCBA]

How can the same model be applied to a novel prompt?
[ PQRST] [TSROQ?]

[ .P QRST ]
Slot
Preserve the pattern of flow between latent states as a “schema”

Rebind surprising prompt tokens to “slots” (clone groups) in the schema
A—-P,B—-Q,C—-R,D->S,E—>T



What mechanism could select among competing abstractions?

Prompt [ rtgosk] [ksogtr]/[x3jd]
( Reverse
Multiple Bw. circ.
training < Fw. circ.
examples
Query idx. 0




Peering under the hood of surprise-driven EM

Prompt [ rtgosk] [ksogtr] / [x]d]
( [ ABCDEF] [FEDCRBA] /. Reverse
Multiple [ X YRKML] [YRKMLX]/ . Bw. circ.
raining s gk L P QP ] [PIRKLTOQ] / Fw. circ.
examples
[ JRLTQP] J/ .. Query idx. O

The process is bootstrapped using prediction surprise on the prompt



Peering under the hood of surprise-driven EM

Prompt [ rtgosk] [ksogtr]/ [x3jd]
[ ABCDEF] [FEDCBA]/ .. Reverse
Relevant [ X YRKML] [YRKMLX]/ . Bw. circ.
raining s gk L P QP ] [PIRKLTOQ] / Fw. circ.
examples _

~

The process is bootstrapped using prediction surprise on the prompt

1. Unsurprising tokens act as “anchors” — serving as a template for partial selection of schemas



Peering under the hood of surprise-driven EM

Prompt [ rtgosk] [ksogtr] / [x]d]
[ rtgosk] [ksogtr] /. Reverse
Relevant [ rtgosk] [tgoskr] /.. Bw. circ.
training < Ew. i
examples [ rtgosk] [krtgos] /. W.Clrcf.

~

The process is bootstrapped using prediction surprise on the prompt

1. Unsurprising tokens act as “anchors” — serving as a template for partial selection of schemas

2. Surprising tokens bind to the “slots” in each remaining schema



Prompt [ rtgosk] [ksogtr] / [x]d]

[ rtgosk] [ksogtr] /. Reverse
1/
d

Relevant +r—+tgoskItf+tgo=kr
training < : | —3—f— I 1+t Fovei

examples

Once the slots rebind to the surprising tokens in the prompt,

consistency determines the correct abstraction.



Mechanism for in-context learning

We propose that in-context learning is a combination of
1. Learning schemas (template circuits) during training.

2. Retrieving relevant schemas in a context-sensitive manner. In tandem

prompt-driven

3. Rebinding surprising prompt tokens to appropriate slots.



GINC dataset from “An Explanation of In-context Learning as Implicit Bayesian Inference” ICLR 2022

A Transition graph of the CSCG B In-context accuracy on the GINC dataset
‘trained on the GINC dataset
N - CSCG with 50 clones CSCG with 10 clones
g =
S 08{ 1
® 06 -
4
$ 04 o — i
3 0 ~ k=3 - k=8 ~ k=3 - k=8

Subsumes prlor work on Baye3|an In-context learning as a speC|aI case which
doesn’t require rebinding and cannot handle novel tokens in the prompt

o oy oywr oywrmro OyWIMT Oy aj
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LIALT dataset for algorithm-learning tasks

A Language Instructed Algorithm Learning Tasks A
Algorithms Test set 1: instruction based retrieval matrix operations
, repeat twice ,, feturn element at index ‘hw instruction / novel input completion i - ’o“\ca
5 reverse % 5 roll columns 1 step prompt ist operations

5 % printalternate even/odd % % transpose i
& circ shift forward/backward & & diagonal reverse the list / [ XY KL MR] [ MR KL XY]
return nth element -

e
Training set format and examples Test set 2: example based retrieval e ¢
algo; language description / in; algoi(in) /.../ inyalgoiiny) / iy algoi(iny) /. ing completion @e‘? : X
<«—— five variations —>» <«— prompt —» J 2 SN
reverse the list / [PZ LM RT | [RT LM PZ | / [QRFC JJ][JJFCQR]/ [2rGJT7][7JGr2]/[abecd][dcba] @ OO "%;,"5
flip the list / [ QM AY JQ HH | [HH JQ AY QM | / [abldm] a/[Xa23] X %@68 & dx"%
B Example learned circuit ' o © ) %@‘

A synthetic dataset to probe “algorithmic” generalization to novel prampts
where this mechanism results in high accuracy,
and the in-context learning process can be easily inspected

In-context accuracy by task
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