

Memory-Efficient Fine-Tuning of Compressed Large Language Models via sub-4-bit Integer Quantization

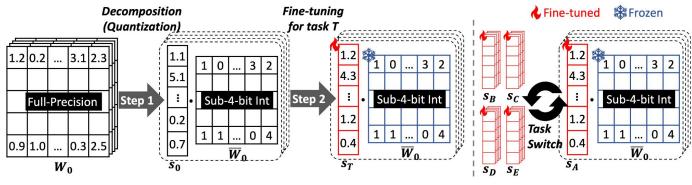
Jeonghoon Kim¹^{*}, Jung Hyun Lee¹^{*}, Sungdong Kim^{1,4}, Joonsuk Park^{1,2},

Kang Min Yoo^{1,3}, Se Jung Kwon¹, Dongsoo Lee¹

¹NAVER Cloud, ²University of Richmond, ³SNU AI Center, ⁴KAIST AI

37th Conference on Neural Information Processing Systems (NeurIPS 2023)

Method



Parameter-efficient Fine-tuning

Deployment

For pre-trained weights of a fully-connected layer $W_0 \in \mathbb{R}^{n \times m}$,

$$\widehat{oldsymbol{W}}_0 = oldsymbol{s}_0 \cdot \overline{oldsymbol{W}}_0 = oldsymbol{s}_0 \cdot \Big(ext{clamp}\Big(\Big\lfloor rac{oldsymbol{W}_0}{oldsymbol{s}_0}\Big
cell + oldsymbol{z}_0, 0, 2^b - 1\Big) - oldsymbol{z}_0\Big),$$

where $A \cdot B$, $\lfloor \cdot \rceil$, and $\operatorname{clamp}(\cdot, a, b)$ indicate the element-wise product of A and B, the rounding function, and the clamping function into the range [a, b], respectively, while per-channel scales and zero-points (namely, $s_0, z_0 \in \mathbb{R}^{n \times 1}$) are initialized to minimize $\|W_0 - \widehat{W}_0\|_F^2$.

$$\widehat{oldsymbol{W}} = (oldsymbol{s}_0 + \Delta oldsymbol{s}) \cdot \overline{oldsymbol{W}}_0 = (oldsymbol{s}_0 + \Delta oldsymbol{s}) \cdot \Big(ext{clamp}\Big(\Big\lfloor rac{oldsymbol{W}_0}{oldsymbol{s}_0}\Big
bright| + oldsymbol{z}_0, 0, 2^b - 1 \Big) - oldsymbol{z}_0 \Big),$$

where $\Delta s \in \mathbb{R}^{n \times 1}$ represents the gradient update of s_0 obtained by adaptation to a downstream task. We dub Eq. 2 as Parameter-Efficient and Quantization-aware Adaptation (PEQA).

Benefits

Optimizer

States

Model

Size

Size

• Memory usage comparison of LLaMA 65B

52MB

131GB

LoRA

(QV4)

326GB

131GB

Full

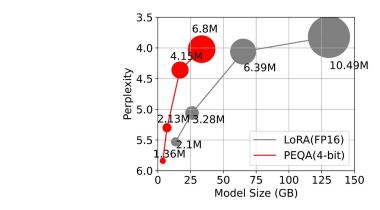
Fine-Tuning

Parameter-

Adaptation

Efficient

• Perplexity over model size



Comparison of PEQA with other methods using LLaMA 65B

32MB

33GB

PEQA

Parameter-

Efficient and

(4-bit, Ours) (3-bit, Ours)

<u>Quant-aware</u> Adaptation

32MB

25GB

PEQA

Method	DRAM	DRAM	Inference	Task-
	(Fine-Tuning)	(Deployment)	Speed	Switching
Full Fine-Tuning	457GB	131GB	Slow	Slow
PEFT	131GB	131GB	Slow	Fast
PEFT+PTQ	131GB	33GB	Fast	Slow
PTQ+PEFT	33GB	33GB	Slow	Fast
PEQA (Ours)	33GB	33GB	Fast	Fast

Experiments

Table 2: To empirically confirm the validity of PEQA's approach, we compare the perplexity (PPL) of fine-tuned LLMs through QAT, PEFT+PTQ, and PEQA on Wikitext2 [51] for GPT-Neo 2.7B, GPT-J 6B, LLaMA 7B, and LLaMA 13B. Weights are quantized into either 3-bit or 4-bit per channel, without a group size [28, 49]. LoRA configuration is set to QV4. The lower PPL, the better.

Method	W Bits	GPT-Neo 2.7B	GPT-J 6B	LLaMA 7B	LLaMA 13B
QAT	4	11.07	8.81	5.76	5.26
LoRA + OPTQ	4	12.09	8.91	7.13	5.31
PEQA (Ours)	4	11.38	8.84	5.84	5.30
QAT	3	12.37	9.60	6.14	5.59
LoRA + OPTQ	3	21.93	11.22	19.47	7.33
PEQA (Ours)	3	12.54	9.36	6.19	5.54

Experiments

Table 3: To show scalability of PEQA, the perplexity (PPL) on Wikitext2 and PennTreeBank (PTB) was compared with LoRA and PEQA. In this comparison, only the weights were quantized into 3-bit and 4-bit per-channel without group size. LoRA configuration is set to QV4. A lower PPL value indicates better performance.

Method	W Bits	GPT-Nec 2.7B	O GPT 6B		aMA l 'B	LLaMA 13B	LLaMA 30B	LLaN 65E	
Wikitext2									
LoRA	16	10.63	8.50) 5.	.53	5.06	4.06	3.82	2
LoRA+OP7	rq 4	12.09	8.9	L 7.	.13	5.31	4.39	4.10	<u> </u>
PEQA (Our	s) 4	11.38	8.8	4 5.	.84	5.30	4.36	4.0	2
LoRA+OP7	FQ 3	21.93	11.2	2 19	0.47	7.33	5.94	5.32	2
PEQA (Our	rs) 3	12.54	9.3	66.	.19	5.54	4.58	4.2	7
РТВ									
LoRA	16	15.92	12.9	2 9.	.14	8.52	7.21	7.11	1
LoRA+OP7	Γ Q 4	18.83	13.4	6 11		8.83	7.55	7.46	3
PEQA (Our	rs) 4	16.55	13.3	0 9.	.69	8.64	7.68	7.3	6
	Method		PT-Neo 2.7B	GPT-J 6B	LLaM 7B	A LLa 13			LaMA 65B
# of	LoRA (QV4)		1.31	1.84	2.10	3.:	28 6.3	9	10.49
Learnable	LoRA (QKVC	/	5.24	7.34	8.39				41.94
Param. (M)	PEQA (Ours)		0.74	1.03	1.36	2.1	13 4.1	.5	6.80
Model	LoRA (QV4)		5.30	12.10	13.48	3 26.	.03 65.	06 1	130.57
Size	PEQA (Ours,	,	1.53	3.65	3.77				33.45
(GB)	PEQA (Ours,	3-bit)	1.21	2.94	2.96	5.4	42 12.	90	25.35

Experiments

Table 7: Massive Multitask Language Understanding (MMLU) benchmark performance of PEQAtuned LLaMAs using Alpaca datasets. Five-shot accuracy is reported for the MMLU. Quantization precision of PEQA is set to 4-bit. When we quantize LLaMA [6] into 4-bit precision using the RTN method, no group size is applied. For LLaMA2 [7], a group size of 256 is used with the RTN method. Note that RTN stands for round-to-nearest in the table.

	# Params	Model Size	Humanities	STEM	Social Sciences	Other	Average
LLaMA [6]	7B	13.5GB	32.6	29.6	38.0	37.9	34.4
	13B	26.1GB	42.8	36.1	53.3	53.2	46.1
	30B	65.1GB	54.6	46.5	66.1	63.4	57.4
+ RTN	7B	3.8GB	28.4	25.6	26.9	31.8	28.3
(w/o group size)	13B	7.0GB	30.5	27.2	35.5	38.8	32.8
	30B	16.9GB	39.6	34.0	46.1	49.7	42.1
+ PEQA	7B	3.8GB	35.7	30.9	38.2	40.0	35.8
	13B	7.0GB	42.8	37.7	53.6	49.0	45.0
	30B	16.9GB	51.1	44.1	62.4	60.7	54.3
LLaMA2 [7]	7B	13.5 GB	43.3	37.0	51.8	52.4	45.9
	13B	26.0GB	54.4	44.2	63.4	60.8	55.7
	70B	138.0 GB	65.2	57.9	80.3	74.7	69.1
+ RTN	7B	3.8GB	39.5	35.5	49.3	49.9	43.2
(g256)	$13\mathbf{B}$	7.0GB	50.2	42.6	61.3	59.7	53.2
	70B	35.3GB	63.7	55.9	78.4	71.6	67.0
+ PEQA	7B	3.8GB	52.0	38.4	54.1	52.0	48.1
-	$13\mathbf{B}$	7.0GB	60.5	45.0	63.3	57.0	55.3
	70B	35.3GB	73.9	55.3	77.8	68.2	67.5

Conclusion

- Interested in fine-tuning a Quantized LLM?
- Seeking to enhance the accuracy of your Quantized LLM?
- Looking to fine-tune your LLM with memory efficiency?

Look no further—use PEQA for your scholarly endeavors!