

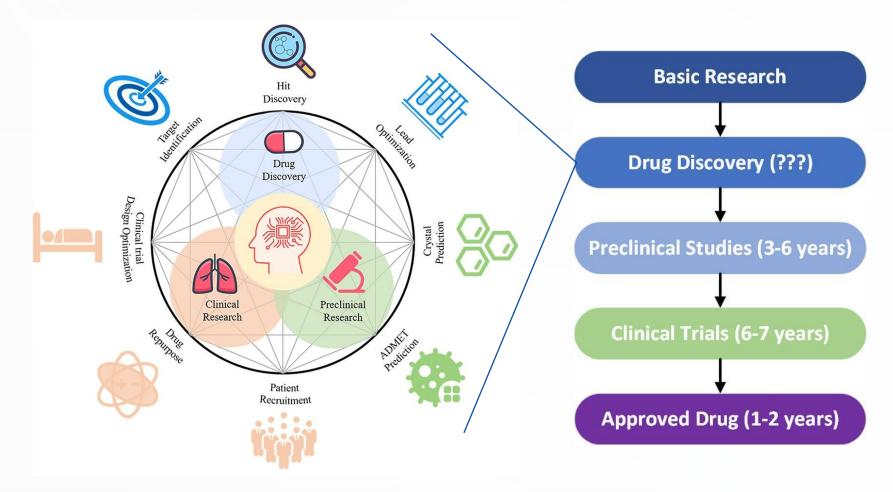
De novo Drug Design using Reinforcement Learning with Multiple GPT Agents

Xiuyuan Hu^{1,2}*, Guoqing Liu²†, Yang Zhao¹, Hao Zhang^{1†} ¹Department of Electronic Engineering, Tsinghua University ²Microsoft Research AI4Science huxy22@mails.tsinghua.edu.cn, guoqingliu@microsoft.com, zhao-yang@tsinghua.edu.cn, haozhang@tsinghua.edu.cn

- Accepted by NeurIPS 2023 as a poster
- Code:

https://github.com/HXYfighter/MolRL-MGPT

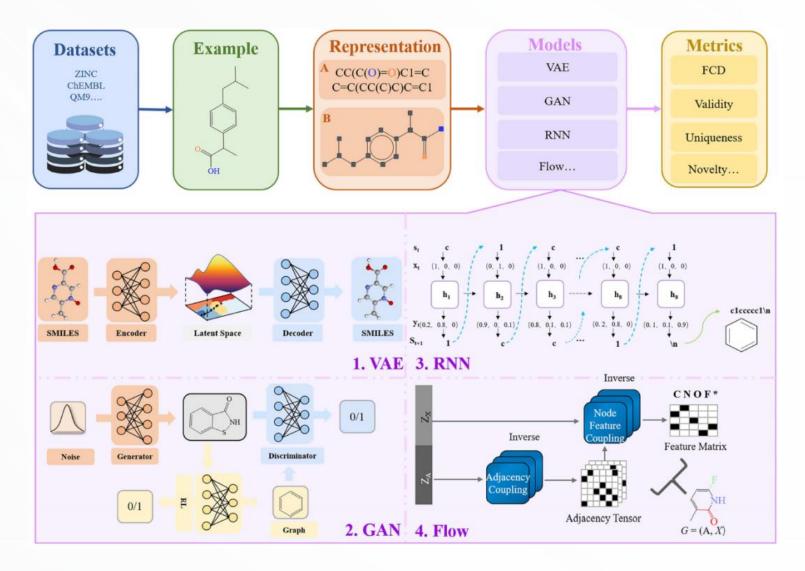
CADD (Computer-aided Drug Development) / AI for Science AIDD: AI for Drug Development



Yu Cheng, Yongshun Gong, Yuansheng Liu, Bosheng Song, Quan Zou, Molecular design in drug discovery: a comprehensive review of deep generative models, *Briefings in* Bioinformatics, 6(6), 2021.

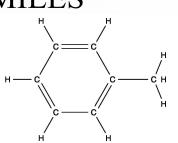
Section Background: *De novo* **Drug Design**

De novo Drug Design: Molecular Generation



Related Works: RL-based Molecular Generation

- Reinforcement learning (RL) is the most widely-used technique in molecular generation.
- Basic idea:
 - Actions: adding atoms / bonds / substructures
 - Rewards: property scores
- SMILES-based RL
 - SMILES—Most popular 1D string representation of molecules
 - Reinvent: a deep reinforcement learning framework for training RNN to generate SMILES
- Graph-based RL



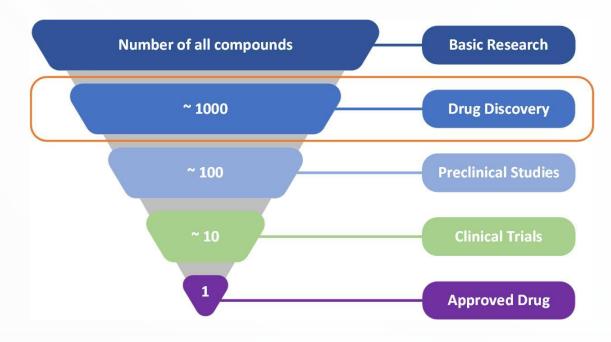
SMILES: Cc1ccccc1

SolutionRelated Works: Transformers in Molecular Generation

- Transformer has obtained a great success in NLP
- Generative Pre-Trained Transformer (GPT) has achieved a breakthrough in machine conversation
- Transformers has also been applied to the chemical language:
 - MolGPT
 - Chemformer
 - TamGent
 - •

Solution Background: Diversity in Drug Development

- For one design objective (e.g. a protein target), we hope to design a set of diverse candidates with desirable properties
- Due to: the gap between *in silico* scores and *in vivo properties*
- Diverse candidates can greatly improve the possibility of success of downstream drug development



Our motivation: to promote the diversity in DD

- Previous works tend to generate a set of highly similar molecular structures
- Similar:

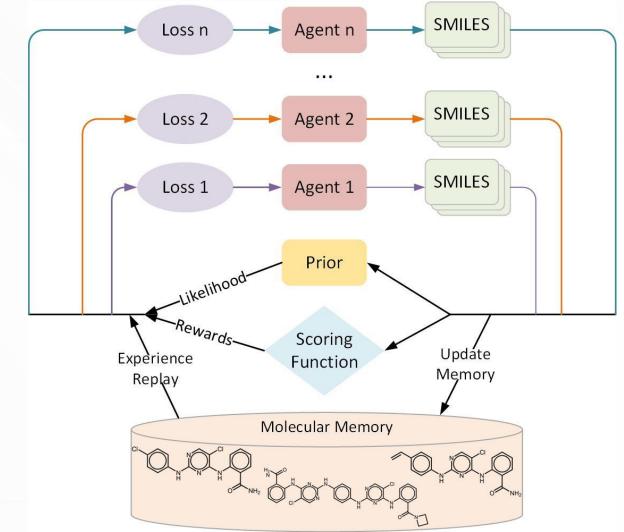
• Dissimilar:

- Molecular similarity / diversity can be measure by molecular distances
- Our motivation:

To promote molecular diversity in drug design

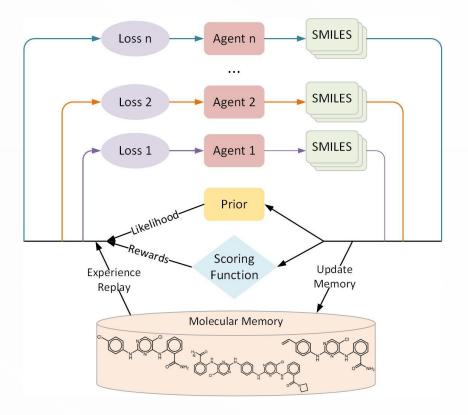
Our approach: MolRL-MGPT

MolRL-MGPT: Molecular design using Reinforcement Learning with Multiple GPT agents



Our approach: MolRL-MGPT

- Using the pre-trained weights of the prior model to initialize all the *n* agents
- In each iteration, agents are updated in order:
 - Each agent generate a batch of SMILES strings
 - Update the memory, experience replay
 - Calculate loss by Prior, scoring function and other agents; update the agent



S Loss Functions

1-st agent: $L_1(x; \Theta_1) = [\log P(x)_{\text{Prior}} - \log P(x)_{\text{Agent}_1} + \sigma_1 \cdot s(x)]^2$

k-th agent:

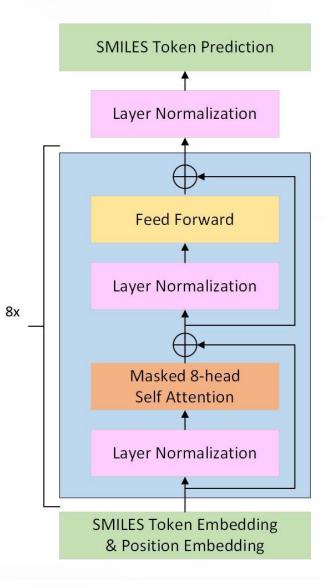
$$L_k(x;\Theta_k) = L_1(x;\Theta_k) - \sigma_2 \sum_{j=1}^{k-1} s(x) \cdot |\log P(x)_{\operatorname{Agent}_k} - \log P(x)_{\operatorname{Agent}_j}|$$

= $[\log P(x)_{\operatorname{Prior}} - \log P(x)_{\operatorname{Agent}_k} + \sigma_1 \cdot s(x)]^2$
 $(-\sigma_2 \sum_{j=1}^{k-1} s(x) \cdot |\log P(x)_{\operatorname{Agent}_k} - \log P(x)_{\operatorname{Agent}_j}|)$

To encourage deviation between agents --Diverse search

Pre-training

- Mini version of GPT-2
- 6.4M parameters
- Training dataset: ChEMBL (2M), ZINC-100M
- Data augmentation: SMILES randomization
- Unsupervised learning
- Results: valid ratio > 98%



S Experiments: GuacaMol benchmark

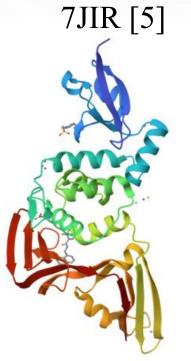
Table 1. Scores of MoIRL-MGPT and other baselines on the GuacaMoI benchmark. MoIRL-MGPT outperforms baselines in 13 molecular design tasks and the total score.

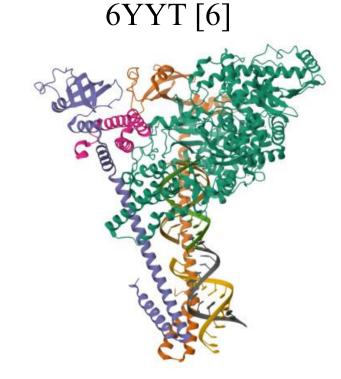
Tasks		SMILES	Graph	Reinvent	GEGI	MolRL-
	GA	LSTM	GA	Renivent	OLOL	MGPT
1. Celecoxib rediscovery	0.732	1.000	1.000	1.000	1.000	1.000
2. Troglitazone rediscovery	0.515	1.000	1.000	1.000	0.552	1.000
3. Thiothixene rediscovery	0.598	1.000	1.000	1.000	1.000	1.000
4. Aripiprazole similarity	0.834	1.000	1.000	1.000	1.000	1.000
5. Albuterol similarity	0.907	1.000	1.000	1.000	1.000	1.000
6. Mestranol similarity	0.790	1.000	1.000	1.000	1.000	1.000
7. C ₁₁ H ₂₄	0.829	0.993	0.971	0.999	1.000	1.000
8. C ₉ H ₁₀ N ₂ O ₂ PF ₂ Cl	0.889	0.879	0.982	0.877	1.000	0.939
9. Median molecules 1	0.334	0.438	0.406	0.434	0.455	0.449
10. Median molecules 2	0.380	0.422	0.432	0.395	0.437	0.422
11. Osimertinib MPO	0.886	0.907	0.953	0.889	1.000	0.977
12. Fexofenadine MPO	0.931	0.959	0.998	1.000	1.000	1.000
13. Ranolazine MPO	0.881	0.855	0.920	0.895	0.933	0.939
14. Perindopril MPO	0.661	0.808	0.792	0.764	0.833	0.810
15. Amlodipine MPO	0.722	0.894	0.894	0.888	0.905	0.906
16. Sitagliptin MPO	0.689	0.545	0.891	0.539	0.749	0.823
17. Zaleplon MPO	0.413	0.669	0.754	0.590	0.763	0.790
18. Valsartan SMARTS	0.552	0.978	0.990	0.095	1.000	0.997
19. deco hop	0.970	0.996	1.000	0.994	1.000	1.000
20. scaffold hop	0.885	0.998	1.000	0.990	1.000	1.000
Total	14.396	17.340	17.983	16.350	17.627	18.052

Experiments: SARS-CoV-2

- SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) caused the COVID-19 global pandamic.
- For this real-world drug design challenge, we select two crucial protein targets to design inhibitors:

PLPro (papain-like protease) RdRp (RNA-dependent RNA polymerase)





Experiments: SARS-CoV-2

• Docking software: Quick Vina 2

For predicting binding modes and affinities (scores) between small molecules and protein targets

- Other oracles: **QED** (Quantitative Estimate of Druglikeness), **SA** (Synthetic Accessibility) Commonly used in real-world drug design
- Transformation functions:

$$t_{\text{docking}}(p) = \frac{1}{1 + 10^{0.625 \cdot (p+10)}}, \quad t_{\text{QED}}(p) = p, \quad t_{\text{SA}}(p) = \frac{10 - p}{9}$$

• Scoring function:

 $s_{\text{total}}(x) = 0.8 \cdot s_{\text{docking}}(x) + 0.1 \cdot s_{\text{QED}}(x) + 0.1 \cdot s_{\text{SA}}(x)$

S Experiments: SARS-CoV-2

Table 2. Candidate inhibitors against the PLPro_7JIR target generated by MoIRL-MGPT.

Molecule		Sold and	g f f f
docking score (↓)	-11.3	-11.1	-11.2
QED score (↑)	0.310	0.258	0.214
SA score (↓)	2.530	2.729	2.549

Table 3. Candidate inhibitors against the RdRp_6YYT target generated by MoIRL-MGPT.

Molecule		John Contraction	
docking score (↓)	-12.3	-13.1	-13.2
QED score (↑)	0.237	0.253	0.241
SA score (↓)	2.772	3.104	2.806

Solution Experiments: Ablation and Comparison

IntDiv(A) :=
$$\frac{1}{|A|(|A|-1)} \sum_{(x,y)\in A\times A, x\neq y} d_T(\mathcal{F}(x), \mathcal{F}(y))$$

Table 4. Results of experiments on GSK3 β , JNK3 and QED maximization. Using Internal Diversity (IntDiv) as the metric for molecular diversity.

	GSK3 β top-100		JNK3 top-100		QED top-100	
	mean score	IntDiv	mean score	IntDiv	mean score	IntDiv
1 agent	1.000	0.318	0.954	0.343		
2 agents	1.000	0.335	0.960	0.357		
MoIRL-MGPT	1.000	0.362	0.961	0.372	0.948	0.862
8 agents	1.000	0.360	0.958	0.369		
w/o ED	1.000	0.285	0.961	0.345		
w/o ER	0.964	0.332	0.918	0.356		
w/o DS	0.997	0.358	0.940	0.370		
w/SP	1.000	0.360	0.956	0.365		
GFlowNet	0.649	0.715	0.437	0.716	0.938	0.809
GraphGA	0.919	0.365	0.875	0.380	0.928	0.845
JT-VAE	0.235	0.770	0.159	0.781	0.921	0.856
Reinvent	0.965	0.308	0.942	0.368	0.948	0.658

Thanks!

