Transformer-based Planning for Symbolic Regression

*Parshin Shojaee

*Kazem Meidani

Amir Barati Farimani

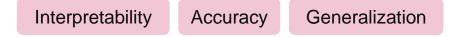
Chandan K. Reddy

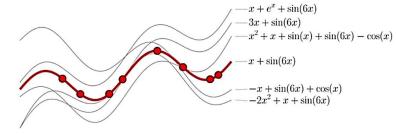
*Equal contribution

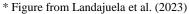
NeurIPS 2023 Presentation

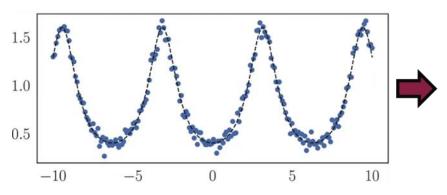
What is Symbolic Regression?

Given a dataset $(X_i, y_i)_{i \le N}$, where each point $X_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$, find a mathematical expression $f : \mathbb{R}^D \to \mathbb{R}$ such that $f(X_i) \approx y_i$









$$\Rightarrow r = \frac{a(1-e^2)}{1+e\cos(\theta_1-\theta_2)}$$

Related Work

Space of equations grows **exponentially** with equation length, containing both discrete and continuous components: $2.1 x + \sin(6.5 x)$

Symbolic Regression is NP-hard Virgolin et al. (2022)

Symbolic Regression is a Hard Combinatorial Problem

SR without Prior Knowledge:

Genetic Programming

Search space exploration via genetic operators: i) selection, ii) mutation/cross-overs Virgolin et al (2019), Kommenda et al (2019), De Franca et al (2020)

_ . .

Reinforcement Learning

Policy optimization for generating expressions Petersen et al. (2020)

Monte Carlo tree search over expression tree Sun et al. (2023)

× Lack of prior knowledge
 × Requires new search per dataset
 × Computationally inefficient

Large-scale Pre-training:

Train Encoder-Decoder Transformers to generate expressions (treat math as a language)

- ✓ Leverage synthetic datasets
- Strong prior knowledge
- Fast Inference ~ single forward pass

Skeleton-based Biggio et al. (2021) End-to-End Kamienny et al. (2022)

i) Predict skeleton,

i) Predict full expression,

ii) Optimize constants

- ii) Refine constants
- Pre-training mismatch with end task
 Decoding depends only on logits
 Lack of performance feedback

Transformer-based Lookahead Planning for SR

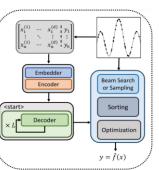
More details in the paper!

Typical approach

Predict expression with Beam Search / Sampling:

- Propose multiple candidates
- Optimize constants
- Sort+Select candidates

Biggio et al. (2021), Kamienny et al. (2022)

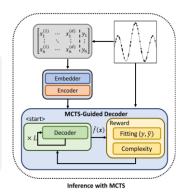


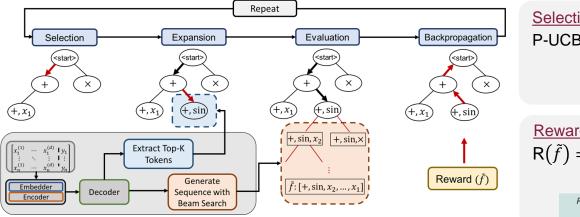
Inference with Beam Search/ Sampling

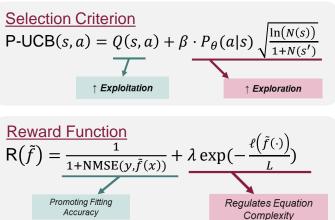
Our approach

Predict expression with lookahead planning:

- Use Monte Carlo Tree Search (MCTS)
- Receive feedback during generation

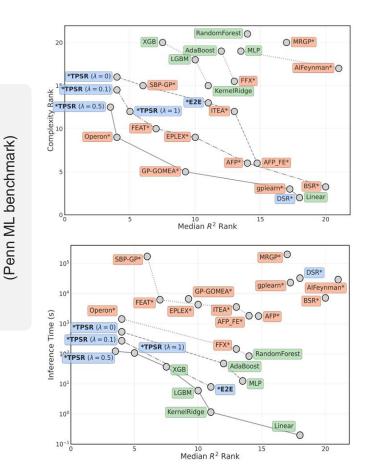




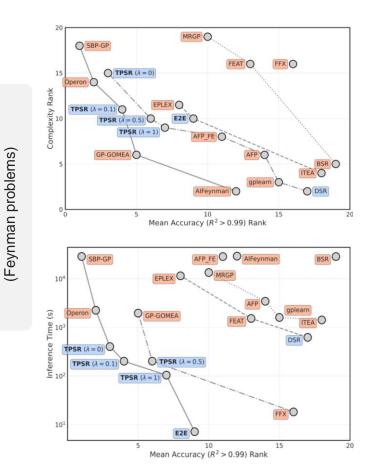


Performance on SRBench

Real-world datasets



DL-based SR GP-based SR ML methods



Symbolic regression datasets

Additional Results

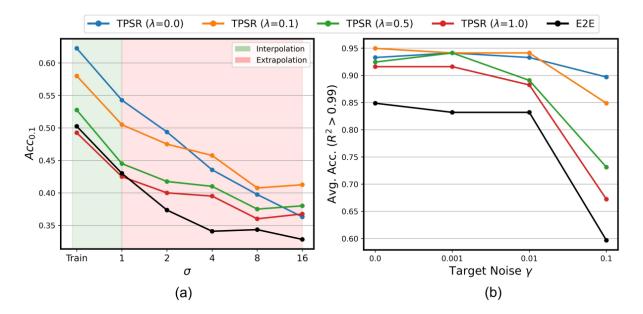
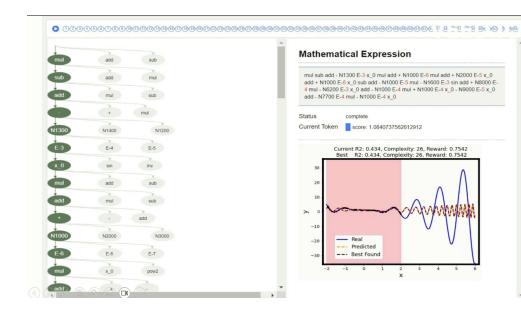


Figure 6: TPSR with $\lambda \in \{0, 0.1, 0.5, 1\}$ compared to E2E for (a) Extrapolation performance where in-domain accuracy is shown for different input variances (σ), and (b) Robustness to noise, where mean accuracy ($R^2 > 0.99$) is shown for various target noise levels (γ).

Thank you!



parshinshojaee@vt.edu

O Code on GitHub:

