

A High-Resolution Dataset for Instance Detection with Multi-View Object Capture

Qianqian Shen, Yunhan Zhao, Nahyun Kwon, Jeeeun Kim, Yanan Li, Shu Kong

Instance Detection

locating the wanted object at distance!

Object Detection (ObjDet) vs. **Instance Detection (InsDet)**

ObjDet aims to detect all objects belonging to some predefined classes.

InsDet requires detecting specific object instances defined by some visual examples.

Our dataset: InsDet

Instance's profile images

- 100 object instances
- 24 samples per instance

Real-World Scenes

- **Diverse** scenes
- High-resolution images

6144×8192

3072×3072

Comparison against existing datasets

- 23 instances
- 9 scenes
- resolution: **1080**×**1920**
- publicly available

GMU dataset [Georgakis et al. 2016]

- 33 instances
- 9 scenes
- resolution: **1080**×**1920**

AVD dataset

[Ammirato et al. 2017]

• publicly available

- 100 instances
- 10 scenes
- resolution: **unknown**
- publicly unavailable

Grocery dataset [Bormann et al. 2021]

- **100** instances
- 14 scenes
- resolution: **6144**×**8192**
- publicly available

InsDet dataset [Shen et al. 2023]

A unified InsDet protocol

Training

objects captured in various views

indoor scene images (not containing instances of interest)

Testing

hard scene (w/ more cluttered environments)

easy scene (w/ sparse placement of objects)

Baseline: Cut-Paste-Learn

[1] Cut, paste and learn: Surprisingly easy synthesis for instance detection. In ICCV, 2017.

A simple, non-learned method

[1] Segment anything. In ICCV, 2023.

[2] DINOv2: Learning robust visual features without supervision. In arXiv, 2023

Benchmarking results

Qualitative evaluations on *easy* scenes

Easy (sparse)

GroundTruth

FasterRCNN

DINO

SAM + DINOv2

Qualitative evaluations on hard scenes

GroundTruth

DINO

Hard (cluttered)

FasterRCNN

SAM + DINOv2

Suggested further directions

• Exploring high-resolution images

Leverage high-resolution visual signals to help detect small objects.

• Exploring faster algorithms

Building multi-scale detectors for more efficient processing.

• Exploring more foundational models

Learn lightweight adaptors to bridge pretrained foundational models for better performance.

Thank You!

https://github.com/insdet