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Causal graph Observational data

1. Model each variable individually:
E.g.: a linear function, spline, GP', NN?, ...

x Independent functions v/ Straightforward
x No amortization v/ Causally consistent
X Seq. error propagation v/ Easy do-operator

[1l Karimi, Amir-Hossein, et al. "Algorithmic recourse under imperfect causal knowledge: a probabilistic approach." Advances in neural information processing systems 33 (2020): 265-277.
[2] Parafita, Alvaro, and Jordi Vitria. "Estimand-Agnostic Causal Query Estimation With Deep Causal Graphs." IEEE Access 10 (2022): 71370-71386.
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Causal graph Observational data
1. Model each variable individually: 2. Model the SCM with a Deep Neural Network.

E.g.: a linear function, spline, GP', NN?, ... E.g.: VACA,' CAREFL,” ...
x Independent functions v/ Straightforward v/ Expressive x Without guarantees
% No amortization v/ Causally consistent v/ Parameter amortization =~ % Complex NN training
X Seq. error propagation v/ Easy do-operator v/ Parallel computations X Inexact

do-operator

[1l Karimi, Amir-Hossein, et al. "Algorithmic recourse under imperfect causal knowledge: a probabilistic approach." Advances in neural information processing systems 33 (2020): 265-277.

[2] Parafita, Alvaro, and Jordi Vitria. "Estimand-Agnostic Causal Query Estimation With Deep Causal Graphs." IEEE Access 10 (2022): 71370-71386.

[3] Sanchez-Martin, P., M. Rateike, and 1. Valera. “VACA: Designing Variational Graph Autoencoders for Causal Queries”. Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no.
[4] Khemakhem, llyes, et al. "Causal autoregressive flows." International conference on artificial intelligence and statistics. PMLR, 2021.
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Normalizing | —— X% % ||

Flow —

Observational data

Capabilities Objectives
1. Generate observational data. 1. Fitthe observed data accurately.
2. Generate interventional data. 2. Identify the exogenous variables.
3. Generate counterfactual data. 3. Ensure causal consistency wrt. the true SCM.

Causal normalizing flows: from theory to practice 5
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1= fi(w)
Xg = fa(x1,u2) induces induces
X3 :fg(x X2, U3) {Xl,X),Xg,X_l}
X4 = ~4(X37 uy)
Structural equations Causal graph Causal ordering
Invertible & differentiable No feedback loops
generators
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Causal ordering

Causal sufficiency

p(u) = 1[; p(ui)
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ANFs and SCMs under the same umbrella I o

SCM—Structural Causal Model
1. Fitthe observed data accurately.

)
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ANFs and SCMs under the same umbrella

1. Fitthe observed data accurately.

ANFs:
e Invertible differentiable neural networks.

e  Autoregressive and monotonic.

Causal normalizing flows: from theory to practice

e Transform random variables, To(x) = u ~ P, .
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SCM—Structural Causal Model
ANF—Aut. Normalizing Flow




ANFs and SCMs under the same umbrella

1. Fitthe observed data accurately.

Triangular Monotonic Increasing (TMI) maps.

fl(lfl)

fa(z1,22)

f(z) =

faln, ... za)

axifi(xl,XQ, SEoRT 7Xi) Z 0

Causal normalizing flows: from theory to practice

ISCdM  UNIVERSITAT

M"w"“u DES
PG  sAARLANDES

SCM—Structural Causal Model
ANF—Aut. Normalizing Flow
TMI—Triangular Monotonic Incr. Map




ANFs and SCMs under the same umbrella I o

SCM—Structural Causal Model

1. Fit the observed data accurately. ANF—Aut. Normalizing Flow
TMI—Triangular Monotonic Incr. Map

Triangular Monotonic Increasing (TMI) maps.
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SCM—Structural Causal Model

1. Fit the observed data accurately. ANF—Aut. Normalizing Flow
TMI—Triangular Monotonic Incr. Map

Triangular Monotonic Increasing (TMI) maps.

fl(lfl)
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ANFs and SCMs under the same umbrella I o

SCM—Structural Causal Model

1. Fit the observed data accurately. ANF—Aut. Normalizing Flow
TMI—Triangular Monotonic Incr. Map

ANFs
everywhere

——

ANFs are TMI maps
and
universal approximators of any other TMI map.

Causal normalizing flows: from theory to practice




ANFs and SCMs under the same umbrella I o

SCM—Structural Causal Model
@ 1. Fit the observed data accurately. ANF—Aut. Normalizing Flow

TMI—Triangular Monotonic Incr. Map

ANFs ANFs

everywhere

=)

(111)
fz(Xl ug) = fo(fi(u1),uz)
fa(x1,x2,u3) = f3(fi(w), f2(f1
fa(xz,wa) = fa(fa(fi(w), fo(fi

Structural equations
can be always
unrolled & monotonized

Causal normalizing flows: from theory to practice
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2. Identify the exogenous variables.

F X Py - Family of TMI maps with fully-factorized distributions.

Theorem 1 (Identifiability). If two elements of the family F x P, (as defined above) produce
the same observational distribution, then the two data-generating processes differ by an invertible,
component-wise transformation of the variables u.

X
X
X1 = Jil(ul) Causal
xg = fa(x1,u2) Normalizing
X3 = ]i3(X17 Xg,U3) Flow
X4 = f4(X37 114)
u u

[11 Xi, Quanhan, and Benjamin Bloem-Reddy. "Indeterminacy in generative models: Characterization and strong identifiability." International Conference on Atrtificial Intelligence and Statistics. PMLR, 2023.

Causal normalizing flows: from theory to practice
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@ 2. Identify the exogenous variables.

F X Py - Family of TMI maps with fully-factorized distributions.

Theorem 1 (Identifiability). If two elements of the family F x P, (as defined above) produce
the same observational distribution, then the two data-generating processes differ by an invertible,
component-wise transformation of the variables u.

= X
X
X] = .}il(ul) Causal
xg = fa(x1,u2) Normalizing
X3 = ]i3(X17X27113) Flow
X4 = 4(X37114)
h
u " h(u) h(u) = (h1(w1), h2(u2), ..., ha(ua))

[11 Xi, Quanhan, and Benjamin Bloem-Reddy. "Indeterminacy in generative models: Characterization and strong identifiability." International Conference on Atrtificial Intelligence and Statistics. PMLR, 2023.
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3. Ensure causal consistency wrt. the true SCM.

Recursive
X
z1 = fi(u) 1
T9 = JfQ(JCM@) X ¥e)
x3 = f3(z1,u3)
x3
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3. Ensure causal consistency wrt. the true SCM.

Recursive

T = fl(ul)
g = folw1,up) X
r3 = f3(21,u3)
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3. Ensure causal consistency wrt. the true SCM.

Recursive Generative Abductive

u X u X u X
z1 = fi(w)
vy = fo(w1, ug) X
w3 = f3(z1,u3)

Causal normalizing flows: from theory to practice
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3. Ensure causal consistency wrt. the true SCM.

Recursive Generative Abductive

T = fl(ul)
g = folw1,up) X
r3 = f3(1,u3)

Causal

Normalizing X
Flow

ORIV
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3. Ensure causal consistency wrt. the true SCM.

Corollary 2 (Causal consistency). If a causal NF Ty isplates the exogenous variables of an SCM
M, then VyTp(x) = T — A and V. Ty ' (u) = T+ 35 A where A is the causal adjacency

n=1
matrix of M. In other words, Tj is causally consistent with the true data-generating process, M.

Recursive Generative Abductive

T = fl(ul)
g = folw1,up) X
r3 = f3(1,u3)

Causal

Normalizing X
Flow

(L0 L
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3. Ensure causal consistency wrt. the true SCM.

Corollary 2 (Causal consistency). If a causal NF Ty isplates the exogenous variables of an SCM
M, then VyTp(x) = T — A and V. Ty ' (u) = T+ 35 A where A is the causal adjacency

n=1
matrix of M. In other words, Tj is causally consistent with the true data-generating process, M.

Recursive Generative Abductive
u X u X u X
r1 = fi(uy)
zo = fo(r1,u9) X
r3 = f3(1,u3)
I
u < u x u b
Causal
Normalizing X
Flow

Causal normalizing flows: from theory to practice




©.®“u UNIVERSITAT

Causal consistency o

SAARLANDES

@ 3. Ensure causal consistency wrt. the true SCM.

Corollary 2 (Causal consistency). If a causal NF Ty isplates the exogenous variables of an SCM
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In theory...
ANF + causal ordering is enough.

Causal graph Causal ordering
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In theory...
ANF + causal ordering is enough.

.. but in practice ...
Neural networks ® local optima.

Recursive Generative Abductive

u X u X u X

Causal
Normalizing
Flow
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Theory vs. practice i

In theory...
ANF + causal ordering is enough.

.. but in practice ...
Neural networks ® local optima.

Wait!
With G we can design a causally consistent network!

Causal normalizing flows: from theory to practice
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3. Ensure causal consistency wrt. the true SCM.

Design Choices Model Properties Time Complexity
Network Type Ascljliggililon AL ISR Sampling Evaluation
u—x Xx—u

u —s x J Generative Ordering X X O(L) O(dL)

Flow direction Generative Graph G v X O(L) O(dL)
Abductive Ordering X X O(dL) O(L)

x — u < Abductive (L > 1) Graph G X X O(dL) O(L)

Abductive (L = 1) Graph G v v O(dL) O(L)

Causal normalizing flows: from theory to practice
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(a) Observational distribution.

Causal normalizing flows: from theory to practice

(b) Interventional distribution
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Performance Time Evaluation (us)
Dataset Model Observ. Interv. Counter. Training Evaluation Sampling
Fork CausalNF 0.00000 0.030.01 0.01¢.00 0.520.05 0.590.08 1.579.57
2 CAREFL'  0.00000 0.04001  0.020.00 0.600.17 0.780.16 2.391 06
VACA 8.75073  0.870.02 1.430.02 45.844 ¢4 34.665 39 73.294.70
LargeBD CausalNF 1.51904 0.020.00 0.010.00 0.52.10 0.600.17 3.05065
NLIN CAREFLT 1.51p05 0.05901  0.080.01 0.840 47 1.18¢ 17 8.251 29
VACA 53.66207 0.390.00 0.820.02 164.921110 137.881572 167.945575
Simpsgn CausalNF 0.00000 0.070.01 0.120.02 0.599.17 0.600.11 1.51930
SYMPROD CAREFLY 0.000.00 0.10¢.02 0.179.04 0.49 15 0.81p.19 1.9133
VACA 13.85064 0.890.00 1.500.04 49.264 o9 37.783 41 79.2014.60

Causal normalizing flows: from theory to practice

12 datasets in the paper!
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SYMPROD CAREFLY 0.000.00 0.10¢.02 0.179.04 0.49 15 0.81p.19 1.9133
VACA 13.85064 0.890.00 1.500.04 49.264 o9 37.783 41 79.2014.60

Causal normalizing flows: from theory to practice

12 datasets in the paper!
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Use-case: fairness auditing and classification I &

SAARLANDES

German Credit

?

O
ol e

Causal
{x1, x2, x3, x4} - .
Normalizing

Flow

&0
+

2

©

Partial Mixed-typed
. yP German Credit - Checking account
Causal graph Observational data 0.8
07 4 B observational Po (223 real data
: do(xs = 0) ' [ estimated
0.6 1 mmm do(xs =1) y Fo’d
2 05 1 ]
g 0.4 A &
S o
SER

Negative Average High
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Use-case: fairness auditing and classification I

Logistic classifier SVM classifier
Ful.l unaware fair x full unaware fair x
Fl-score 72-286.16 72.374.90 59.668.57 76-042.86 76.805,82 68.285_74
Accuracy 67.003,83 66.752.63 54-755,91 69.503,11 71 -003.83 59.252.99

[1l Kusner, Matt )., et al. "Counterfactual fairness." Advances in neural information processing systems 30 (2017).
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Use-case: fairness auditing and classification I

Logistic classifier SVM classifier
Ful.l unaware fair x full unaware fair x
Fl-score 72-286.16 72.374.90 59.668.57 76-042.86 76.805,82 68.285_74
Accuracy 67.003,83 66.752.63 54-755,91 69.503,11 71 -003.83 59.252.99
Unfairness  5.847 93 2.810.72 0.000.00 6.657 45 2.78040  0.000.00

Causal
Normalizing
Flow

E, [P(K(XCf) =1|do(xs =1),x) - P(x(x¥) =1 | do(xs = 0),xf)]

[1l Kusner, Matt )., et al. "Counterfactual fairness." Advances in neural information processing systems 30 (2017).
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Use-case: fairness auditing and classification
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[  SAARLANDES

Logistic classifier

SVM classifier

full unaware fair x | fair u full unaware fair x | fair u
Fl-score 72-286.16 72.374_90 59.668_57 73.084.38 76-042.86 76.805_82 68.285_74 77.391.52
Accuracy 67.003,83 66.752.63 54.755,91 66.503.70 69.503,11 71-003.83 59.252,99 69.751,26
Unfairness 5.84>93 2.81p72 0.00000 | 0.00000! 6.65245 2.78040 0.000.00 | 0.000.00
Causal
x Normalizing u\S K (U-\S )
Flow
us

[1l Kusner, Matt )., et al. "Counterfactual fairness." Advances in neural information processing systems 30 (2017).

Causal normalizing flows: from theory to practice




Concluding remarks il o

SAARLANDES

e  Causal normalizing flows are a natural choice to learn SCMs.

e  We provide theoretical results, and practical ways to: ANFs
o efficiently capture a causal model, and
o exactly perform causal inference.

e Lots of interesting future work! Get in touch! T
o  Confounders?

Non-bijective generators?

Better loss functions?

Misspecifications?
Applications?

o O O O

Causal normalizing flows: from theory to practice




Today at Poster #822
515p.m. — 715 p.m

About to
graduate!

Questions?

OJO,

) arxiv: 2306.05415

Q psanch21/causal-flows

Causal normalizing flows: from theory to practice


https://arxiv.org/abs/2306.05415
https://github.com/psanch21/causal-flows
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Does it work? I o

'(] Theoretically: App. C = Intuition: the u, of the intervened value is set to cancel out the influence of its parents.

@ Empirically:

oY
@

(¢) 5-CHAIN

(a) Observational distribution. (b) Interventional distribution do(x3 = 2.18).

04.08.23 Causal normalizing flows: from theory to practice
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Structural Causal Models

[  SAARLANDES

causal generator exogenous
distribution

NS

AnSCMis atuple M = (f‘, P,) describing a data-generating process to

X1 = fl(lh)
transform exogenous variables u into (observed) endogenous variables x. xa = fa(x1,112)
o ? {x1, x2, X3, x4}
i R g (T
u = (uy,us,...,uq) ~ Py, % = Sl pu ) ford =1, 2..:: 50 x4 = fa(x3,14)
e Causal graph e  Adj. matrix e  Causal ordering
&) G :=V,f#0
(x3) (x4 0000 =1 2 3 4)
a_|t 000
(2 1100
0 01 0 .
x1 = fi(u1)
. . - : . Xz = {x1, @, x3, x4}
We can use SCMs for causal inference, i.e., reason about what-if questions: o= Bbaam) ]

How the world would have been if X happened. xa = falxs, 1s)

04.08.23 Causal normalizing flows: from theory to practice
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Normalizing flows i

flow base
(neural net) distribution

\ / Jacobian

An NF is a tuple (Tp, Py,)that express the probability density of observed
variables x as the transformation of base variables u:

/ Learn @ via MLE!
To(x) ==u~ P, withlog-density logp(x) = logp(Te(x)) + log|det(VxTo(x))]

Autoregressive NFs (ANFs) model each layer of the network as: Jacobian

zi =1}(z";hl), where hl:=ci(z};l,)

7 \“% i

transformer conditioner
(str. monotonic) (only takes prev. inputs)

04.08.23 Causal normalizing flows: from theory to practice




SCMs as TMI maps I

We can always write an SCM as a TMI map.

1. Unroll the SCM. = fi(u1)

(
. fz(Xl uz) = fo(fi(ur), uz)

@ Acyclic fa(x1,x2,u3) = f3(fi(w), fz(f( 11),u2),u3)

fa( fi

x3, 1) = fa(fa(fi(w), fo(fi(wr), us), uz), uy)

2.  “Monotonize” the SCM.

Always possible. How? Apply a Kndthe-Rosenblatt (KR) transport following the causal graph:
Krn(-rl:rn—h -Trn) = Fy_l{Fu(-’I;Trerlzm—l) ‘ Kl (.’L’l), ceey K'm.—l(-'L'lzm—l)}

If P, is a standard uniform distribution = Darmois construction.

04.08.23 Causal normalizing flows: from theory to practice
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Network designs g

SAARLANDES

e  GCenerative networks:
o  Defined from u to x.
o The conditioner only takes the input according to G.

27t = 7i(zhnkY), where Wit = Ci(zim.i)

e  Abductive networks:
o  Defined from x to u.
o  The conditioner only takes the input according to G.

z; =7i(z, ';h}), where hj= Ci(zi’;il)

N

04.08.23 Causal normalizing flows: from theory to practice




Usual implementation il o

PG  sAARLANDES

. . . x1 = fi(u) &
The do-operator simulates an external intervention in the system, _
Xz = fa(x1, u2)

breaking any causal relationships going to the intervened node. s = o, %, 5) (2 D |
x4 = fa(xs,u4) )

The usual implementation yields an intervened SCM with a new set

~ x1 = fi(m) @
of equations, MT = (fI, P,)

Xo =«
_{xl, a, X3, X4}
x3 = f3(x1,%2,u3) &) & éll
However, it only works for the recursive formulation. x4 = fa(xs, w) a’
(a) Recursive. (b) Unrolled. (c) Compacted.

04.08.23 Causal normalizing flows: from theory to practice




Our implementation I

1: function SAMPLEINTERVENEDDIST(Z, «v)

We propose to instead update P,, to put mass only on those 2 u~ P,

values of u that yield the intervened value, M* = (f PZIj, 3 Rd— To_l(u)
4: X; < &
55 u; < TQ(X),L'

pf(u) =90 ({fz(xpa u;) = a}) Hpj u;) 6 x « T, (u)

74 return x
8: end function

(a) Recursive. (b) Unrolled. (c) Compacted.

04.08.23 Causal normalizing flows: from theory to practice
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The multiple representations of SCMs i

x = G3(G2(G1u)) x = (G*+G+1I)u u=(I-GQ)x

(a) Recursive. (¢) Compacted. (d) Inverted.
xl:l; zt=u 77 =71 Xy = z2 X1 = Uy up = X1
Xo = 2X u o
2 311 2 Z%:ug = z%:ZZ}—kzé = x2:Z% Xo = 2uy + Uy Uy = X9 — 2X3
X3 = 9X2o us 1 _ 2 _ .1 — 2 2 v —
z3 = u3 73 = 73 X3 = 325 + 23 X3 = 6uy + 3us + us uz = X3 — 3X2

04.08.23 Causal normalizing flows: from theory to practice
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Extra

checking
account

repayment
history
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