
QLoRA: Efficient Finetuning
of Quantized LLMs

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, Luke Zettlemoyer
https://github.com/TimDettmers/bitsandbytes

https://timdettmers.com

https://github.com/TimDettmers/bitsandbytes

Large models are not easily accessible

2

Model Fine-tuning memory

T5-11B 132 GB

Mistral-7B 84 GB

LLaMA2-70B 840 GB

Large models are not easily accessible

3

Model Fine-tuning memory

T5-11B 132 GB

Mistral-7B 84 GB

LLaMA2-70B 840 GB

Model Fine-tuning memory

T5-11B 6 GB

Mistral-7B 5 GB

LLaMA2-70B 46 GB

QLoRA

Background

How does quantization work?

5

Data types are mappings from symbols (bits) to numbers
(floats), can we generalize?

Most general form of describe quantization is through a mapping from integers to
float values normalized to the range -1.0 and 1.0.

Int4 0 1 2 3 4 … FP4 0 1 2 3 4 …
 -7 -6 -5 -4 -3 … -12 -8 -6 -4 -3 …

6

Quantization as a mapping

Most general form of describe quantization is through a mapping from integers to
float values normalized to the range -1.0 and 1.0.

Int4 0 1 2 3 4 … FP4 0 1 2 3 4 …
 -7 -6 -5 -4 -3 … -12 -8 -6 -4 -3 …

 -1 -0.86 -0.71 -0.57 -0.43 … -1 -0.67 -0.5 -0.33 -0.25 …

The mapping format { index : float value} generalizes to all data types.

7

Recipe: How to quantize a tensor?

Given a tensor X of any real data type. We can apply quantization as follows:
1. Normalize X into the range [-1.0, 1.0] by dividing by absmax(X)
2. Find the closest value in the data type (rounding for integers; in general

binary search)

8

Quantization Example: A non-standard 2-bit data type

Map: {Index: 0, 1, 2, 3 -> Values: -1.0, 0.3, 0.5, 1.0}

Input tensor: [10, -3, 5, 4]

1. Normalize with absmax: [10, -3, 5, 4] -> [1, -0.3, 0.5, 0.4]
2. Find closest value: [1, -0.3, 0.5, 0.4] -> [1.0, 0.3, 0.5, 0.5]
3. Find the associated index: [1.0, 0.3, 0.5, 0.5] -> [3, 1, 2, 2] -> store
4. Dequantization: load -> [3, 1, 2, 2] -> lookup -> [1.0, 0.3, 0.5, 0.5] ->

denormalize -> [10, 3, 5, 5]

9

Finetuning is expensive.

Finetuning cost per parameter:

● Weight: 16 bit
● Weight gradient: 16 bit
● Optimizer state: 64 bit
● 12 byte per parameter

70B model -> 840 GB of GPU memory -> 36x consumer GPUs

Finetuning with Low Rank Adapters (LoRA).

Finetuning cost per parameter:

● Weight: 16 bits
● Weight gradient: ~0.4bit
● Optimizer state: ~0.8bit
● Adapter weights: ~0.4bit
● 17.6 bits per parameter

70B model -> 154 GB of GPU memory -> 8x consumer GPUs

QLoRA

QLoRA: 4-bit frozen base model + Low rank Adapters

Finetuning cost per parameter:

● Weight: 4 bit
● Weight gradient: ~0.4 bit
● Optimizer state: ~0.8 bit
● Adapter weights: ~0.4 bit
● 5.2 bit per parameter

70B model -> 46 GB of GPU memory -> 2x consumer GPUs.

Saving memory while preserving
fine-tuning quality

4-bit NormalFloat (NF4) an information-theoretically
optimal data type for normal distributions

Reduce absmax constant size with Double Quantization

16 bit

4 bit
0.5 bit

+
1x 32-bit value for every 64
parameters

Quantize again
0.5 bit

0.125
 bit

0.002-bit

+

Weight

Quantized
weight

Absmax
constant Absmax

constant

2nd
Absmax
constant

Quantized
absmax
constant

Results

QLoRA recovers lost performance through fine-tuning

4-bit Guanaco: A ChatGPT-quality 4-bit chatbot finetuned in 24h on a single GPU

Demo

Conclusion

● QLoRA makes finetuning 18x cheaper
● 4-bit NormalFloat (NF4) replicates 16-bit finetuning performance
● 4-bit chatbots created with QLoRA can be competitive with ChatGPT

QLoRA is available through the bitsandbytes Python library and fully integrated
into the HuggingFace transformers stack.

I am on the academic job market — please get in touch:
dettmers@cs.washington.edu

