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Large models are not easily accessible
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Model Fine-tuning memory

T5-11B 132 GB

Mistral-7B 84 GB

LLaMA2-70B 840 GB



Large models are not easily accessible
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Model Fine-tuning memory

T5-11B 132 GB

Mistral-7B 84 GB

LLaMA2-70B 840 GB

Model Fine-tuning memory

T5-11B 6 GB

Mistral-7B 5 GB

LLaMA2-70B 46 GB

QLoRA



Background



How does quantization work?
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Data types are mappings from symbols (bits) to numbers 
(floats), can we generalize?

Most general form of describe quantization is through a mapping from integers to 
float values normalized to the range -1.0 and 1.0.

Int4  0        1        2         3          4 …            FP4    0      1         2         3         4  …
       -7      -6        -5       -4         -3 …                    -12    -8        -6        -4        -3 …
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Quantization as a mapping

Most general form of describe quantization is through a mapping from integers to 
float values normalized to the range -1.0 and 1.0.

Int4  0        1        2         3          4 …            FP4    0      1         2         3         4  …
       -7      -6        -5       -4         -3 …                    -12    -8        -6        -4        -3 …

       -1   -0.86   -0.71   -0.57   -0.43 …                  -1   -0.67   -0.5   -0.33   -0.25 …

The mapping format { index : float value} generalizes to all data types.
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Recipe: How to quantize a tensor?

Given a tensor X of any real data type. We can apply quantization as follows:
1. Normalize X into the range [-1.0, 1.0] by dividing by absmax(X)
2. Find the closest value in the data type (rounding for integers; in general 

binary search)
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Quantization Example: A non-standard 2-bit data type

Map: {Index: 0, 1, 2, 3 -> Values: -1.0, 0.3, 0.5, 1.0}

Input tensor: [10, -3, 5, 4]

1. Normalize with absmax: [10, -3, 5, 4] -> [1, -0.3, 0.5, 0.4]
2. Find closest value: [1, -0.3, 0.5, 0.4] -> [1.0, 0.3, 0.5, 0.5]
3. Find the associated index: [1.0, 0.3, 0.5, 0.5] -> [3, 1, 2, 2] -> store
4. Dequantization: load -> [3, 1, 2, 2] -> lookup -> [1.0, 0.3, 0.5, 0.5]  -> 

denormalize -> [10, 3, 5, 5]
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Finetuning is expensive. 

Finetuning cost per parameter:

● Weight: 16 bit
● Weight gradient: 16 bit
● Optimizer state: 64 bit
● 12 byte per parameter

70B model -> 840 GB of GPU memory -> 36x consumer GPUs



Finetuning with Low Rank Adapters (LoRA).

Finetuning cost per parameter:

● Weight: 16 bits
● Weight gradient: ~0.4bit
● Optimizer state:  ~0.8bit
● Adapter weights: ~0.4bit
● 17.6 bits per parameter

70B model -> 154 GB of GPU memory -> 8x consumer GPUs



QLoRA



QLoRA: 4-bit frozen base model + Low rank Adapters

Finetuning cost per parameter:

● Weight: 4 bit
● Weight gradient: ~0.4 bit
● Optimizer state: ~0.8 bit
● Adapter weights: ~0.4 bit
● 5.2 bit per parameter

70B model -> 46 GB of GPU memory -> 2x consumer GPUs.



Saving memory while preserving 
fine-tuning quality



4-bit NormalFloat (NF4) an information-theoretically 
optimal data type for normal distributions



Reduce absmax constant size with Double Quantization
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Results



QLoRA recovers lost performance through fine-tuning



4-bit Guanaco: A ChatGPT-quality 4-bit chatbot finetuned in 24h on a single GPU

Demo



Conclusion

● QLoRA makes finetuning 18x cheaper 
● 4-bit NormalFloat (NF4) replicates 16-bit finetuning performance
● 4-bit chatbots created with QLoRA can be competitive with ChatGPT

QLoRA is available through the bitsandbytes Python library and fully integrated 
into the HuggingFace transformers stack.

I am on the academic job market — please get in touch: 
dettmers@cs.washington.edu


