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An approach to extract detailed topological features (e.g., persistence of connected components or cycles) of 
simplicial complexes (e.g., graphs).

Basic idea: 
1) Obtain a filtration (i.e., sequence of sub-complexes) by applying a 

filtering function on simplices (elements of the original complex); 

2) Keep track of the appearance (birth) and disappearance (death) of 
topological features, obtaining the so-called persistence diagrams.

A simplicial complex.

Among other applications, PH has been successfully employed as a 
feature extractor in many disciplines, such as Astrophysics, Computer 
Vision, and  Bioinformatics.
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Persistent homology (PH)

Source: Wikipedia



Vertex-color Filtrations: Nested sequence of subgraphs  induced by ∅ = G(0) ⊆ G(1) ⊆ … ⊆ G f : X → (0,∞)

Persistent homology on graphs

Attributed graph

Colors/features
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Filtration induced by: ↦ 1 ↦ 2 ↦ 3
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Vertex-color Filtrations: Nested sequence of subgraphs  induced by ∅ = G(0) ⊆ G(1) ⊆ … ⊆ G f : X → (0,∞)

Persistent homology on graphs

Attributed graph G(2)

Colors/features
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Vertex-color Filtrations: Nested sequence of subgraphs  induced by ∅ = G(0) ⊆ G(1) ⊆ … ⊆ G f : X → (0,∞)
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Vertex-color Filtrations: Nested sequence of subgraphs  induced by ∅ = G(0) ⊆ G(1) ⊆ … ⊆ G f : X → (0,∞)

Persistent homology on graphs

Attributed graph G(3)

(1,∞)
(1,2)

(3,3)
(3,3)

(2,2)
Persistence 

diagram
(0-dim)

G(2)

Colors/features
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G(1)

Filtration induced by: ↦ 1 ↦ 2 ↦ 3



Edge-color Filtrations

Persistent homology on graphs (cont.)

Edge-colored graph
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Filtration induced by: ↦ 1 ↦ 2

Edge-color Filtrations

Persistent homology on graphs (cont.)

Edge-colored graph
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Filtration induced by: ↦ 1 ↦ 2

Edge-color Filtrations

Persistent homology on graphs (cont.)

Edge-colored graph

4

G(0)



Filtration induced by: ↦ 1 ↦ 2

Edge-color Filtrations

Persistent homology on graphs (cont.)

Edge-colored graph

4

G(1)G(0)



Filtration induced by: ↦ 1 ↦ 2

Edge-color Filtrations

Persistent homology on graphs (cont.)

Edge-colored graph
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G(1)G(0)

(0,∞)
(0,1)

(0,2)
(0,1)

(0,2)

G(2)



Motivation
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Persistent homology has been used to boost the predictive capabilities of graph neural networks (GNNs).

In this work, we want to answer two fundamental open questions:
    Q1: What is the expressive power of persistent homology (from color-based filtrations) on graphs?
    Q2: Can we design more expressive persistence diagrams?

However, while the expressivity of GNNs is well-understood (e.g., in terms of the Weisfeiler-Leman test), the 
theoretical underpinnings of PH on graphs are less explored.



What is the expressive power of 
persistent homology on graphs?
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An important notion: color-separating sets

Component-wise colors: The multiset comprising the 
set of colors of each connected component.

Component-wise colors:
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{{   ,   },{  },{  }}



An important notion: color-separating sets
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{{   ,   },{  },{  }}

A color-separating set for a pair of graphs  is a set of colors  such that, if we remove  from  and 
, we obtain subgraphs with distinct component-wise colors.

(G, G′￼) Q Q G
G′￼

Removing blue and 
green, we obtain…

{{   ,   },{  }} {{   ,   },{  }}≠
Thus,            is a color-separating set!{   ,   } 



Theorem 1: On the power of vertex-color filtrations

We can obtain different vertex-color (0-dim) diagrams if and only if there is a color-separating set.

Can PH based on vertex-color filtrations 
distinguish these graphs?
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Yes!!            is a color-separating set!{   ,   } 



Another important notion: color-disconnecting sets
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A color-disconnecting set for a pair of graphs  is a set of colors  such that, if we remove edges of 
colors  from  and , we obtain subgraphs with different number of connected components.

(G, G′￼) Q
Q G G′￼

Removing blue, 
we obtain…

1 component 2 components 

Thus, {blue} is a color-disconnecting set!Q =



Theorem 2: On the power of edge-color filtrations

Can PH based on edge-color filtrations 
distinguish these graphs?
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We can obtain different edge-color (0-dim) diagrams if and only if there is a color-disconnecting set.

Yes!! {blue} is a color-disconnecting set!Q =



Theorem 3: Vertex-color vs. edge-color filtrations

Vertex-color succeeds

Edge-color fails 

Vertex-color fails

Edge-color succeeds 
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There exist non-isomorphic graphs that vertex-color filtrations can distinguish but edge-color 
filtrations cannot, and vice-versa.



Can we design more expressive 
persistence diagrams?
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RePHINE (Refining PH by Incorporating Node-color into Edge-based filtration)

w : (b, d, fv(c(w)), min
u∈𝒩(w)

fe({{c(u), c(w)}}))

Original birth and death time (from edge-color filtration)

Independent vertex-color filtration function. Edge-color filtration function.

Idea: Given independent vertex- and edge-color filtration functions , we augment persistence diagrams 
from edge-color filtrations with vertex-color information.

( fv, fe)

Color of node u
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Building RePHINE diagrams
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↦ 1 ↦ 2 ↦ 3 ↦ 2 ↦ 3 ↦ 1



Building RePHINE diagrams
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(0, ,1, )
(0, ,1, )

(0, ,2, )
(0, ,3, )

(0, ,2, )

G(0)

↦ 1 ↦ 2 ↦ 3 ↦ 2 ↦ 3 ↦ 1



Building RePHINE diagrams

G(1)
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G(0)

(0, ,1, )
(0, ,1,1)

(0, ,2, )
(0,1,3,1)

(0, ,2, )

↦ 1 ↦ 2 ↦ 3 ↦ 2 ↦ 3 ↦ 1



Building RePHINE diagrams

G(1) G(2)
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G(0)

(0, ,1,2)
(0, ,1,1)

(0,2,2,2)
(0,1,3,1)

(0,2,2,2)

↦ 1 ↦ 2 ↦ 3 ↦ 2 ↦ 3 ↦ 1



Building RePHINE diagrams

G(1) G(2)
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G(0) G(3)

(0,∞,1,2)
(0,3,1,1)

(0,2,2,2)
(0,1,3,1)

(0,2,2,2)

↦ 1 ↦ 2 ↦ 3 ↦ 2 ↦ 3 ↦ 1



Theorem 4: RePHINE vs color-based diagrams
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RePHINE is isomorphism invariant and is strictly more expressive than color-based PH.

Two graphs that color-based PH cannot 
distinguish, but RePHINE can.



Combining RePHINE and GNNs
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Results on real-world data

Table 1: Predictive performance on graph classification. We denote in bold the best results. For ZINC,
lower is better. For most datasets, RePHINE is the best-performing method.

GNN Diagram NCI109 " PROTEINS " IMDB-B " NCI1 " MOLHIV " ZINC #

GCN
- 76.46 ± 1.03 70.18 ± 1.35 64.20 ± 1.30 74.45 ± 1.05 74.99 ± 1.09 0.875 ± 0.009
PH 77.92 ± 1.89 69.46 ± 1.83 64.80 ± 1.30 79.08 ± 1.06 73.64 ± 1.29 0.513 ± 0.014
RePHINE 79.18 ± 1.97 71.25 ± 1.60 69.40 ± 3.78 80.44 ± 0.94 75.98 ± 1.80 0.468 ± 0.011

GIN
- 76.90 ± 0.80 72.50 ± 2.31 74.20 ± 1.30 76.89 ± 1.75 70.76 ± 2.46 0.621 ± 0.015
PH 78.35 ± 0.68 69.46 ± 2.48 69.80 ± 0.84 79.12 ± 1.23 73.37 ± 4.36 0.440 ± 0.019
RePHINE 79.23 ± 1.67 72.32 ± 1.89 72.80 ± 2.95 80.92 ± 1.92 73.71 ± 0.91 0.411 ± 0.015

Figure 6 shows the learning curves for 2000 epochs, averaged over five runs. Notably, for all datasets,
the expressivity of RePHINE is significantly higher than those from PH and similar to GNN’s. On
cub10-2, while PH and GNN obtain accuracies of around 0.5, RePHINE allows a better fit to the
observed data, illustrated by higher accuracy and lower loss values.

Real-world data. To assess the performance of RePHINE on real data, we use six popular datasets
for graph classification (details in the Supplementary): PROTEINS, IMDB-BINARY, NCI1, NCI109,
MOLHIV and ZINC [7, 16, 20]. We compare RePHINE against standard vertex-color persistence
diagrams (simply called PH here). Again, we do not aim to benchmark the performance of topological
GNNs, but isolate the effect of the persistence modules. Thus, we adopt default (shallow) GNN
architectures and process the persistence diagrams exactly the same way using DeepSets. We report
the mean and standard deviation of predictive metrics (AUC for MOLHIV, MAE for ZINC, and
Accuracy for the remaining) over five runs. We provide further implementation details in Appendix C.

Table 1 shows the results of PH and RePHINE combined with GCN [22] and GIN [37] models.
Notably, RePHINE consistently outperforms PH, being the best-performing method in 10 out of 12
experiments. Overall, we note that GIN-based approaches achieve slightly better results. Our results
suggest that RePHINE should be the default choice for persistence descriptors on graphs.

Table 2: PersLay vs. RePHINE: Accuracy results on graph classification.

Method NCI109 PROTEINS IMDB-B NCI1
PersLay 70.12 ± 0.83 67.68 ± 1.94 68.60 ± 5.13 68.86 ± 0.86
RePHINE+Linear 73.27 ± 1.69 71.96 ± 1.85 70.40 ± 2.97 74.94 ± 1.35

Comparison to PersLay [2]. We also compare our method against another topological neural
network, namely, PersLay. Since PersLay does not leverage GNNs, we adapted our initial design for
a fair comparison. Specifically, we compute RePHINE diagrams with learned filtration functions and
apply a linear classifier to provide class predictions. Also, we concatenate the vectorial representations
of the RePHINE diagrams with the same graph-level features obtained using PersLay. We refer to
our variant as RePHINE+Linear. Table 2 reports accuracy results over 5 runs on 4 datasets. For all
datasets, RePHINE+Linear achieves higher accuracy, with a significant margin overall.

6 Conclusion, Broader Impact, and Limitations
We resolve the expressivity of persistent homology methods for graph representation learning,
establishing a complete characterization of attributed graphs that can be distinguished with general
node- and edge-color filtrations. Central to our analyses is a novel notion of color-separating sets.

Much like how WL test has fostered more expressive graph neural networks (GNNs), our framework
of color-separating sets enables the design of provably more powerful topological descriptors such as
RePHINE (introduced here). RePHINE is computationally efficient and can be readily integrated into
GNNs, yielding empirical gains on several real benchmarks.

We have not analyzed here other types of filtrations, e.g., those based on the spectral decomposition
of graph Laplacians. Future work should also analyze the stability, generalization capabilities, and
local versions of RePHINE. Overall, we expect this work to spur principled methods that can leverage
both topological and geometric information, e.g., to obtain richer representations for molecules in
applications such as drug discovery and material design.
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We process the persistence diagrams using DeepSets and combine the resulting vectors with GNN embeddings.
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Wanna know more? Theoretical contributions of this work
On vertex-level filtrations (Section 2 and Section 3.1):

Inconsistency issues due to injective vertex filtrations Lemma 1
Real holes (d = 1) ⇠= Component-wise colors Lemma 2
Almost holes (b 6= d, d 6= 1) ⇠= Separating sets Lemma 3
Distinct almost holes ) Color-separating set Lemma 4
Birth time of persistence tuples ⇠= Vertex color Lemma 5
The expressive power of vertex-color filtrations Theorem 1

On edge-level filtrations (Section 3.2):
Almost holes ⇠= Disconnecting sets Lemma 6
Reconstruction of disconnecting sets Lemma 7
The expressive power of edge-color filtrations Theorem 2

Vertex-level vs. edge-level filtrations (Section 3.3):
Vertex-level persistence 6� edge-level persistence, and vice-versa Theorem 3

New method (RePHINE) (Section 4):
RePHINE is isomorphism invariant Theorem 4
RePHINE � vertex-, edge-, and vertex- [ edge-level diagrams Theorem 5

Figure 1: Overview of our theoretical results.

We study the expressive power of PH on attributed (or colored) graphs, viewed as 1-dim simplicial
complexes. We focus on the class of graph filtrations induced by functions on these colors. Impor-
tantly, such a class is rather general and reflects choices of popular methods (e.g., topological GNNs
[15]). We first analyze the persistence of connected components obtained from vertex colors. Then,
we extend our analysis to graphs with edge colors. To obtain upper bounds on the expressive power of
color-based PH, we leverage the notion of separating/disconnecting sets. This allows us to establish
the necessary and sufficient conditions for the distinguishability of two graphs from 0-dim persistence
diagrams (topological descriptors). We also provide constructions that highlight the limits of vertex-
and edge-color PH, proving that neither category subsumes the other.

Based on our insights, we present RePHINE (short for “Refining PH by Incorporating Node-color
into Edge-based filtration”), a simple method that exploits a subtle interplay between vertex- and
edge-level persistence information to improve the expressivity of color-based PH. Importantly,
RePHINE can be easily integrated into GNN layers and incurs no computational burden to the
standard approach. Experiments support our theoretical analysis and show the effectiveness of
RePHINE on three synthetic and six real datasets. We also show that RePHINE can be flexibly
adopted in different architectures and outperforms PersLay [2] — a popular topological neural net.

In sum, our contributions are three-fold:

(Theory) We establish a series of theoretical results that characterize PH on graphs, including
bounds on the expressivity of vertex- and edge-level approaches, the relationship between these
approaches, and impossibility results for color-based PH — as summarized in Figure 1.

(Methodology) We introduce a new topological descriptor (RePHINE) that is provably more
expressive than standard 0-dim and 1-dim persistence diagrams.

(Experiments) We show that the improved expressivity of our approach also translates into gains
in real-world graph classification problems.

2 Preliminaries
We consider arbitrary graphs G = (V, E, c, X) with vertices V = {1, 2, . . . , n}, edges E ✓
V ⇥ V and a vertex-coloring function c : V ! X , where X denotes a set of m colors or features
{x1, x2, . . . , xm} such that each color xi 2 Rd. We say two graphs G = (V, E, c, X) and G

0 =

2

18

http://www.github.com/Aalto-QuML/rephine

