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Persistent homology (PH)

An approach to extract detailed topological features (e.g., persistence of connected components or cycles) of
simplicial complexes (e.g., graphs).

A sitmplicial complex.

Basic idea:
1) Obtain a filtration (i.e., sequence of sub-complexes) by applying a
filtering function on simplices (elements of the original complex);
2) Keep track of the appearance (birth) and disappearance (death) of
topological features, obtaining the so-called persistence diagrams. o v
Among other applications, PH has been successfully employed as a ‘

feature extractor in many disciplines, such as Astrophysics, Computer

. . ) Source: Wikipedi
Vision, and Bioinformatics. DR THRPEEE
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Persistent homology on graphs Colors/features

(

Vertex-color Filtrations: Nested sequence of subgraphs @ = G € GV C ... C Ginduced by f: X — (0,00)

Filtration induced by: @ = 1 (O ~2 () = 3

Attributed graph G G® el
1 2 1 1 2 1 2
° | e . ° |
3O O, 5O
(1,00)
! I (1,2) Persistence
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Persistent homology on graphs (cont.)

Edge-color Filtrations

Edge-colored graph
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Persistent homology on graphs (cont.)

Edge-color Filtrations

Filtration induced by: / — 1 — 2
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Persistent homology on graphs (cont.)

Edge-color Filtrations

Filtration induced by: / — 1 / — 2

Edge-colored graph

1

(0,00)
(0,1)
(0,1)
(0,2)
(0,2)




Motivation

Persistent homology has been used to boost the predictive capabilities of graph neural networks (GNNSs).

However, while the expressivity of GNNs 1s well-understood (e.g., in terms of the Weisteiler-Leman test), the
theoretical underpinnings of PH on graphs are less explored.

In this work, we want to answer two fundamental open questions:
Q1: What 1s the expressive power of persistent homology (from color-based filtrations) on graphs?
Q2: Can we design more expressive persistence diagrams?



What 1s the expressive power ot
persistent homology on graphs?
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An important notion: color-separating sets

Component-wise colors: The multiset comprising the Component-wise colors:

set of colors of each connected component. O (H@.0 {0 {0
® S () 8

A color-separating set for a pair of graphs (G, ') is a set of colors  such that, if we remove Q from G and
G’, we obtain subgraphs with distinct component-wise colors.

O

Removing blue and
green, we obtain... O

(@018 F (@00

Thus,{@®,O} is a color-separating set!



Theorem 1: On the power of vertex-color filtrations

We can obtain different vertex-color (0-dim) diagrams if and only if there is a color-separating set.

Can PH based on vertex-color filtrations
distinguish these graphs?

Yes!!{@®,O} is a color-separating set!




Another important notion: color-disconnecting sets

A color-disconnecting set for a pair of graphs (G, G’) is a set of colors Q such that, if we remove edges of
colors O from G and G', we obtain subgraphs with different number of connected components.

® O Removing blue, = ® ®
we obtain... O

1 component 2 components

Thus, O = {blue} is a color-disconnecting set!



Theorem 2: On the power of edge-color filtrations

We can obtain different edge-color (0-dim) diagrams if and only if there is a color-disconnecting set.

Can PH based on edge-color filtrations
i i i i ~ ~ i distinguish these graphs?
Yes!! O = {blue} is a color-disconnecting set!
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Theorem 3: Vertex-color vs. edge-color filtrations

There exist non-isomorphic graphs that vertex-color filtrations can distinguish but edge-color
filtrations cannot, and vice-versa.

O--- @ O--- @ @0 O o
O O O—@

O—0 O—0 —QO—0 O O

Vertex-color succeeds Vertex-color fails

Edge-color fails Edge-color succeeds

11



Can we design more expressive
persistence diagrams?
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RePHINE (Refining PH by Incorporating Node-color into Edge-based filtration)

Idea: Given independent vertex- and edge-color filtration functions (f,, f,), we augment persistence diagrams
from edge-color filtrations with vertex-color information.

Original birth and death time (from edge-color filtration)
Color of node u

w | b.d, f(c(w)), min f({{c(u), c(w)}})

/ ueN (w) \

. . Edge-color filtration function.
Independent vertex-color filtration function. dge-color hiltration function

13



Building RePHINE diagrams

"

el S22 Se3

Original birth and death time (from edge-color filtration)

\

Independent vertex-color filtration function.

w: (b, d, f,(c(w)), min f({{c(n), C(W)}})>

/ ueN(w) \

Color of node u

Edge-color filtration function.

@-2 O~3 Or1
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Building RePHINE diagrams

Original birth and death time (from edge-color filtration)

\

/ ueN(w) \

Independent vertex-color filtration function.
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Edge-color filtration function.
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Building RePHINE diagrams

Original birth and death time (from edge-color filtration)

\

/ ueN (w) \

Independent vertex-color filtration function.

W (b, d, f,(c(w)), min f({{c(w), C(W)}})>

Edge-color filtration function.

Color of node u

@~2 O3 Or1
G

0, ,1,2)
0, ,1,1)
(0,1,3,1)
(0,2,2,2)
(0,2,2,2)
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Original birth and death time (from edge-color filtration)

Buﬂdlng RePHINE diagr dIls W <>,d, f,(c(w)), min fe({{C({),c(w)}}))
/ ueN (w) \

Independent vertex-color filtration function. e

',"|—>1/|—>2 /|—>3 @~2 O3 O+-1
GO G G® G®

(0,00,1,2)
(0,3,1,1)
(0,1,3,1)
(0,2,2,2)
(0,2,2,2)
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Theorem 4: RePHINE vs color-based diagrams

RePHINE is isomorphism invariant and is strictly more expressive than color-based PH.

OQ --Q
Two graphs that color-based PH cannot H
distinguish, but RePHINE can. Q

15



Combining RePHINE and GNNs5s

Input —>[ GNN ] [ GRN ] [Readout
Layer Layer \

[RePHINE} oo [RePHINE}

CMLP) — Prediction

/
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Results on real-world data

We process the persistence diagrams using DeepSets and combine the resulting vectors with GNN embeddings.

Table 1: Predictive performance on graph classification. We denote 1n bold the best results. For ZINC,
lower 1s better. For most datasets, RePHINE 1s the best-performing method.

GNN Diagram NCI109 1t PROTEINS 1 IMDB-B 1 NCI1 1 MOLHIV 7 ZINC |
- 76.46 + 1.03 7018 £ 1.35 6420+ 1.30 7445+ 1.05 7499 + 1.09 0.875 + 0.009
GCN PH 7792 +1.89 6946 +1.83 64.80+ 1.30 79.08+t1.06 73.64-+129 051340014
RePHINE 7918 + 1.97 71.25 + 1.60 69.40 - 3.78 80.44 + 0.94 75.98 + 1.80 0.468 —- 0.011
- 76.90 + 0.80 7250 +2.31 7420+ 1.30 7689 +1.75 70.76 £2.46 0.621 + 0.015
GIN PH 78.35 +0.68 6946 £248  69.80 + 0.84 79.12 + 1.23 73.37 =436 0440 + 0.019
RePHINE 79.23 +1.67 7232+ 189 7280+295 8092+ 192 7371 +091 0411+ 0.015
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Wanna knOW mOl’E? Theoretical contributions of this work

On vertex-level filtrations (Section 2 and Section 3.1):

Visit our pOStGI'I #629 Inconsistency issues due to injective vertex filtrations Lemma 1
Real holes (d = co) = Component-wise colors Lemma 2
Thu 14 Dec 10:45 a.m. CST Almost holes (b # d, d # o) = Separating sets Lemma 3
Distinct almost holes = Color-separating set Lemma 4
Birth time of persistence tuples = Vertex color Lemma 5
Code: Wwwglthub .com/ Aalto—QuML/ I ephine The expressive power of vertex-color filtrations Theorem 1
On edge-level filtrations (Section 3.2):
Almost holes = Disconnecting sets Lemma 6
Reconstruction of disconnecting sets Lemma 7
The expressive power of edge-color filtrations Theorem 2
Vertex-level vs. edge-level filtrations (Section 3.3):
Vertex-level persistence 3 edge-level persistence, and vice-versa Theorem 3
New method (RePHINE) (Section 4):
RePHINE is isomorphism invariant Theorem 4
RePHINE > vertex-, edge-, and vertex- U edge-level diagrams Theorem 5

Johanna Immonen Amauri H. Souza Vikas Garg
johanna.x.1mmonen®@helsinki.f1 amauri.souza@aalto.f1 vgarg@csail . mit.edu
@amaurihsouza @montsgarg
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http://www.github.com/Aalto-QuML/rephine

