
Utility-based Perturbed Gradient Descent: 
An Optimizer for Continual Learning 

• Deep representation learning methods struggle with continual 
learning, suffering from both catastrophic forgetting of useful 
units and loss of plasticity, often due to rigid and unuseful units. 

• While many methods address these two issues separately, only a 
few currently deal with both issues of continual learning. 

• Utility-based Perturbed Gradient Descent (UPGD) protect useful 
weights and perturb less useful ones, addressing both issues.  

• We use the setup of streaming learning as the testing ground and 
design continual learning problems with hundreds of non-
stationarities and unknown task boundaries. 

• UPGD improves performance on non-stationary problems, 
being demonstrably capable of addressing both issues.  

• The utility of a weight is defined as the change in loss when setting 
the weight to zero. The utility  of the weight  at layer  is:Ul,i,j(Z) i, j l

Idea: to retain useful units while modifying the rest, we need a metric to 
assess their utility or usefulness.

Streaming Learning Setting

• The learner is provided with a stream of samples ( ) generated 

using a non-stationary target function  such that .  

• The learner observes the input , outputs the prediction 

, and then observes the true output , strictly in this 
order. The learner is then evaluated immediately based on an 
online metric  (e.g., accuracy). 

•  The learner uses a neural network for prediction to learn 
immediately without storing the sample.  

• Due to the non-stationarity of the target function, learners encounter 
loss of plasticity and catastrophic forgetting
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Performance of methods on Input-permuted MNIST (a), Label-permuted EMNIST (b), and Label-permuted mini-ImageNet (c). 

(a) Adam suffers from catastrophic forgetting on label-permuted extended MNIST and hence 
hardly improves performance. 

(b) Adam loses plasticity on input-permuted MNIST as newer tasks are presented and 
performs much worse than Adam with restarts later.
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where  is the noise sample,  is the step size, and 
 is a scaled utility. For , the weight remains 

unaltered even by gradient descent, and for , get updated 
by both perturbation and gradient descent. 

• We scale the utility by the maximum utility of all weights (e.g., 
instantaneous or trace), which is given by , 
where  is the scaling function, for which we use sigmoid.

ξ ∼ 𝒩(0,1) α
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•  Input-Permuted MNIST is a problem where only loss of plasticity is 
present. Learned representations in a task become irrelevant to the 
new task, so the it's a suitable problem to study loss of plasticity. 

• UPGD has no decaying performance, mitigating loss of plasticity. 

• Label-permuted EMNIST/mini-ImageNet are problems where loss 
of plasticity and catastrophic forgetting are present. Learned 
representations in one task are still useful for the next task, making 
these problems suitable for studying catastrophic forgetting. 

• UPGD continually improves its online accuracy, showing that it 
improves its representations by protecting useful weights from large 
updates, mitigating catastrophic forgetting.

where  is the sample,  is the sample loss given , and 
 is a counterfactual loss where  is the same 

as  except the weight  is set to .  

• This is computationally expensive since it requires many 
additional forward passes. Thus, we aim to approximate it such that 
no additional forward passes are needed.  

• We expand the counterfactual loss  around the 

current weight  and evaluate at weight zero, the result is:
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• We write an update equation that that performs gradient-based 
learning guided by utility-based information. 

• The utility is used as a gate for the gradients to prevent large 
updates to already useful weights, addressing forgetting, and help 
perturb unuseful weights which become difficult to change through 
gradients, addressing loss of plasticity. UPGD rule is given by:
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Conclusion

UPGD mitigates continual learning issues in streaming learning 
through  protecting useful weights and perturbing less useful ones.


