
Utility-based Perturbed Gradient Descent:
An Optimizer for Continual Learning

• Deep representation learning methods struggle with continual
learning, suffering from both catastrophic forgetting of useful
units and loss of plasticity, often due to rigid and unuseful units.

• While many methods address these two issues separately, only a
few currently deal with both issues of continual learning.

• Utility-based Perturbed Gradient Descent (UPGD) protect useful
weights and perturb less useful ones, addressing both issues.

• We use the setup of streaming learning as the testing ground and
design continual learning problems with hundreds of non-
stationarities and unknown task boundaries.

• UPGD improves performance on non-stationary problems,
being demonstrably capable of addressing both issues.

• The utility of a weight is defined as the change in loss when setting
the weight to zero. The utility of the weight at layer is:Ul,i,j(Z) i, j l

Idea: to retain useful units while modifying the rest, we need a metric to
assess their utility or usefulness.

Streaming Learning Setting

• The learner is provided with a stream of samples () generated

using a non-stationary target function such that .

• The learner observes the input , outputs the prediction

, and then observes the true output , strictly in this
order. The learner is then evaluated immediately based on an
online metric (e.g., accuracy).

• The learner uses a neural network for prediction to learn
immediately without storing the sample.

• Due to the non-stationarity of the target function, learners encounter
loss of plasticity and catastrophic forgetting

xt, yt

ft yt = ft(xt)

xt ∈ ℝd

̂y ∈ ℝm yt ∈ ℝm

E(yt, ̂yt)

Performance of methods on Input-permuted MNIST (a), Label-permuted EMNIST (b), and Label-permuted mini-ImageNet (c).

(a) Adam suffers from catastrophic forgetting on label-permuted extended MNIST and hence
hardly improves performance.

(b) Adam loses plasticity on input-permuted MNIST as newer tasks are presented and
performs much worse than Adam with restarts later.

Mohamed Elsayed, A. Rupam Mahmood

where is the noise sample, is the step size, and
 is a scaled utility. For , the weight remains

unaltered even by gradient descent, and for , get updated
by both perturbation and gradient descent.

• We scale the utility by the maximum utility of all weights (e.g.,
instantaneous or trace), which is given by ,
where is the scaling function, for which we use sigmoid.

ξ ∼ 𝒩(0,1) α
Ūl,i,j ∈ [0,1] Ūl,i,j = 1

Ūl,i,j = 0

Ūl,i,j = ϕ(Ul,i,j /η)
ϕ

(a) (b)

(c)

• Input-Permuted MNIST is a problem where only loss of plasticity is
present. Learned representations in a task become irrelevant to the
new task, so the it's a suitable problem to study loss of plasticity.

• UPGD has no decaying performance, mitigating loss of plasticity.

• Label-permuted EMNIST/mini-ImageNet are problems where loss
of plasticity and catastrophic forgetting are present. Learned
representations in one task are still useful for the next task, making
these problems suitable for studying catastrophic forgetting.

• UPGD continually improves its online accuracy, showing that it
improves its representations by protecting useful weights from large
updates, mitigating catastrophic forgetting.

where is the sample, is the sample loss given , and
 is a counterfactual loss where is the same

as except the weight is set to .

• This is computationally expensive since it requires many
additional forward passes. Thus, we aim to approximate it such that
no additional forward passes are needed.

• We expand the counterfactual loss around the

current weight and evaluate at weight zero, the result is:

Z ℒ(𝒲, Z) 𝒲
ℒ(𝒲¬[l,i,j], Z) 𝒲¬[l,i,j]

𝒲 Wl,i,j 0

ℒ(𝒲¬[l,i,j], Z)
Wl,i,j

Ul,i,j ≐ ℒ(𝒲¬[l,i,j], Z) − ℒ(𝒲, Z)

Ul,i, j ≈ −
∂ℒ

∂Wl,i, j
Wl,i, j +

1
2

∂2ℒ
∂W2

l,i, j
W2

l,i, j

Wl,i, j ← Wl,i, j − α (∂ℒ
∂wl,i, j

+ ξ) (1 − Ūl,i, j)

• We write an update equation that that performs gradient-based
learning guided by utility-based information.

• The utility is used as a gate for the gradients to prevent large
updates to already useful weights, addressing forgetting, and help
perturb unuseful weights which become difficult to change through
gradients, addressing loss of plasticity. UPGD rule is given by:

OPT Workshop on Optimization for Machine Learning

Abstract Method Results and Discussion

{mohamedelsayed, armahmood}@ualberta.ca

Conclusion

UPGD mitigates continual learning issues in streaming learning
through protecting useful weights and perturbing less useful ones.

