# Adaptive Resolution Residual Networks

## éa Demeule, Mahtab Sandhu, Glen Berseth NeurIPS 2023 DLDE Workshop Spotlight

# Mila Université na de Montréal





Motivation — Signals come in adapt to this?

We adapt to arbitrary resolutions instead of normalizing everything to a fixed resolution.

We scale down computational cost according to resolution.

# various resolutions. Why don't we





### Define operations on continuous signals. Translate to operations on discrete signals. (Demeule, 2023; Bartolucci et al., 2023)





### Translation can adapt between different resolutions but comes with challenging constraints.

Can't use standard layers directly!



Demeul(

, Gà

# Background — Convolving with Whittaker-Shannon kernels



### Whittaker-Shannon filters are used to ensure a function is smooth enough to be sampled at a target resolution. (Whittaker, 1927; Shannon, 1949)







We can use Laplacian pyramids to express signals as sums of progressively lower resolution signals. (Burt and Adelson, 1987)



### We can build this decomposition by applying a simple block of operations multiple times.



# Demeule OLéa



### We filter the signal so it can be fully captured at the next lower resolution.

This gives us a lower bandwidth signal.







# Demeule OLéa



### We calculate the difference between the lower bandwidth signal and the original signal.







 $\bigcirc$ Demeul OLéa



lower resolution.

# Background — Laplacian pyramids

### We apply the next Laplacian pyramid block on the lower bandwidth signal while resampling to the





11



### We apply the next Laplacian pyramid block...







12



### We apply the next block. We can add as many blocks as we need.





### This gives us the decomposition we saw earlier.



 $p_1^{difi}$ 

zero!





Starting at lower resolution means we need to compute a lower number of blocks. Some blocks trivially contribute zero.











<del>8×8</del>

Starting at lower resolution means we need to compute a lower number of blocks. Some blocks trivially contribute zero.







### We leverage the general idea that a lower resolution means a lower number of blocks.

We reuse the structure of Laplacian pyramids, combine it with residual connections, and add two filtering operations that allow rediscretization.



Laplacian Residual Block





# input.

## Contribution — Laplacian residuals

### We start with a simple linear projection of the









### We apply the same filtering setup found in Laplacian pyramid blocks.







# Contribution — Laplacian residuals

### r inline with the difference part.

resolution, yet the whole network tion. This facilitates architecture





# 2



### We filter the output of the layer to allow resampling to the lower resolution of the next block.











### Contribution — Laplacian residuals **Inner Architectural** Linear **0** Blocking **Block** Lowpass











### We add the lower bandwidth part of the original signal, like in residual blocks.

# Contribution — Laplacian residuals **Inner Architectural** Linear 0 Blocking Block Lowpass











## Contribution — Laplacian residuals Laplacian Residual Block Inner Architectural Linear 0 Blocking Block Lowpass We apply a linear layer. We have shown a single block — this would be followed by a similar block that has lower resolution.









Laplacian Residual Block



 $16 \times 16$ 

8x8



### What if we start with a low resolution input and normalize it back to high resolution, as fixed-resolution networks do?









### The filter acts as an identity map.











### The difference part is zero.











### The output of the standard layer is a constant.

This is true of most layers including convolutions and activations; this is our only design constraint.









### The contribution of the residual is zero because we subtract the mean!







### This is exactly identical to skipping all computation but the linear layer at the end!

## Contribution — Laplacian residuals

### Linea

### We can adapt to low resolution input by skipping blocks!









Summary — Laplacian residuals

# Demeul 9 6

We get lower computational cost at lower

We create an adaptive-resolution network from fixed-resolution layers that have no difficult design constraints.

# resolution by simply removing Laplacian residuals.



Motivation — Laplacian dropout

### We need robustness at lower resolution for rediscretization to be useful in practice!





### We can emulate low resolution input during training by randomly zeroing out difference parts.



















### We add a chance of zeroing out the difference part to emulate low resolution input during training.

# Contribution — Laplacian dropout

### We chain dropout with boolean logic to make sure this remains equivalent to a filtering operation on the input.









### When we drop out the difference part, the network sees exactly what it would see if the input had a lower resolution.







Experiments

classical convolutional networks across four image classification datasets.

ResNet[18/50/101]

WideResNetV2[50/101]

MobileNetV3[Small/Large]

EfficientNetV2[S/M/L]

# We compare ARRNs against ten well-engineered

CIFAR10

### CIFAR100

TinyImageNet







### We train once at high resolution.

### We evaluate at many lower resolutions.

convolutional blocks of EfficientNetV2 and MobileNetV2.

models, and train for 100 epochs.

# We build our ARRNs around layers inspired by the

# We use identical training hyperparameters for all



Experiments — Accuracy

ARRNs with rediscretization (full line) and Laplacian dropout (red line) perform best overall against all baselines and ablated ARRNs



- ARRN + Dropout + Rediscretized
- ARRN + Dropout
- ResNet18
- ResNet50
- ResNet10<sup>.</sup>
- VideResNet50V2
- ideResNet101V2
- /lobileNetV3Sma

- EfficientNetV2S EfficientNetV2M
- EfficientNetV2L



Experiments — Inference time

ARRNs with rediscretization (full line) uniquely lower their inference time at lower resolution.

ARRNs have a reasonable inference time relative to baselines that have had years of tuning from the community.

42

- RRN + Dropout + Rediscretized
- RRN + Dropout
- esNet18
- ResNet50
- ideResNet50V2

- EfficientNetV2M
- EfficientNetV2L













### ARRNs allow building adaptive-resolution networks from standard layers.

ARRNs have a lower inference time at lower resolution.

ARRNs can train once at high resolution and robustly run inference at low resolution.

### link to workshop page



