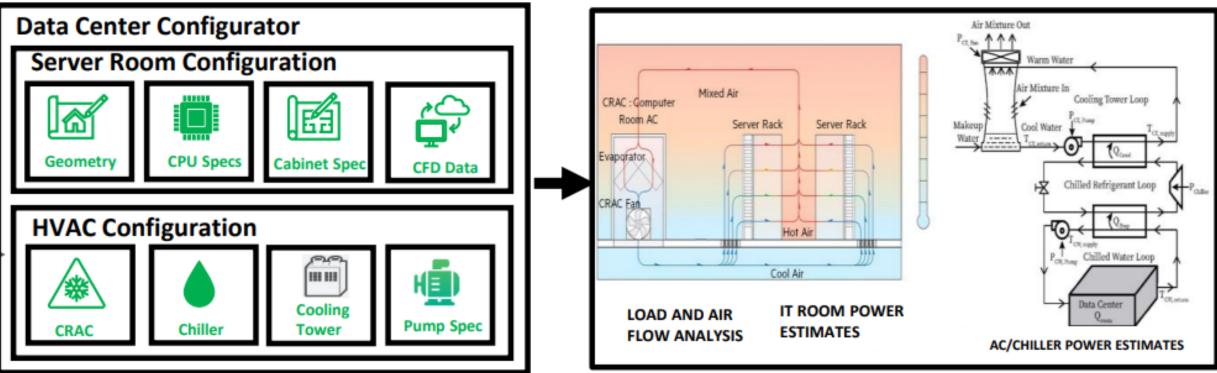


A Configurable Pythonic Data Center Model for Sustainable Cooling and ML Integration

Avisek Naug* Antonio Guillen* Ricardo Luna Gutiérrez* Vineet Gundecha*

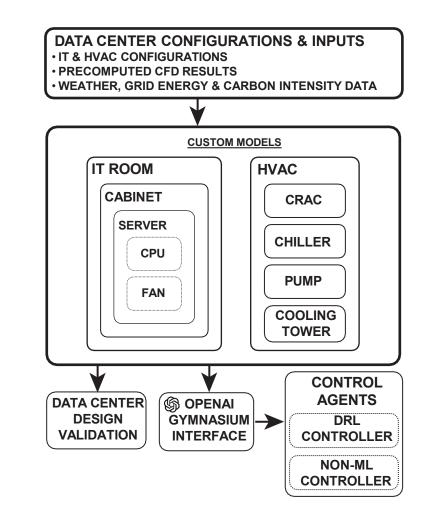
Sahand Ghorbanpour Sajad Mousavi Ashwin Ramesh Babu Soumyendu Sarkar*

HEWLETT PACKARD ENTERPRISE


*Equal contribution

Architecture Overview

CONFIGURATION ENABLER


SYSTEM MODEL

Architecture Details

JSON enabled Customization

- IT Room Geometry and Parameters
- IT And HVAC System Parameters
- Precomputed CFD measurements
- Python enabled
 - Hierarchical Modeling of IT and HVAC systems
 - Visualization
- Control Agents
 - Open AI gym interface with support for Multiagent Reinforcement Learning
 - Traditional controllers like MPC
- Vectorized calculations to facilitate high scalability and faster execution on limited resources for simulation avisek.naug@hpe.com

Comparison with Current Data Center Model Implementations

Characteristics Current Implementations	IT Room Customization	HVAC Customization	Open Al interface for RL Control	Integrate CFD Results	Temperature Visualization	Scalability	Execution Speed
CFD Based							
Energy Plus and Open Modelica							
Our Work							

Inclue

Includes these features

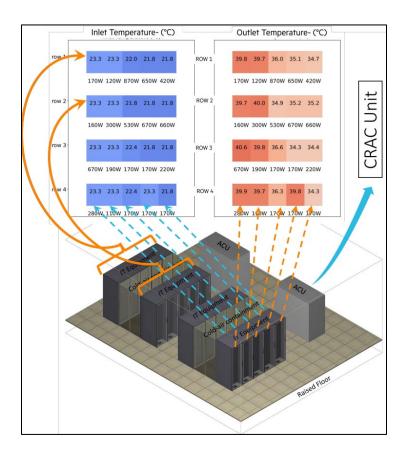
Lacks these features

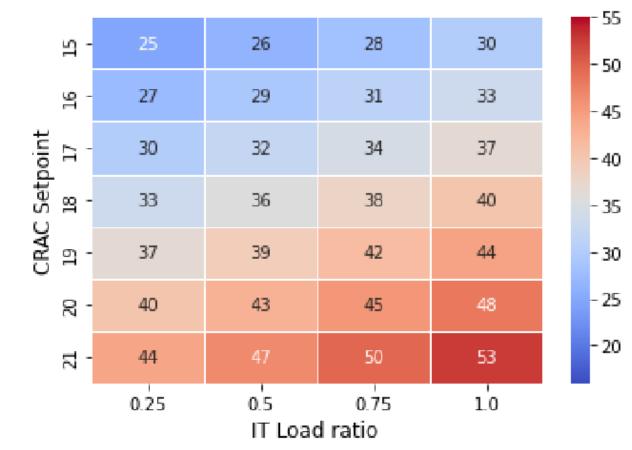
Customizability

- Parameter values assigned via dictionary → Any parameter can be updated
- CFD Datasets: Any arrangement of data center provided the "supply" and "approach" temperatures are precomputed

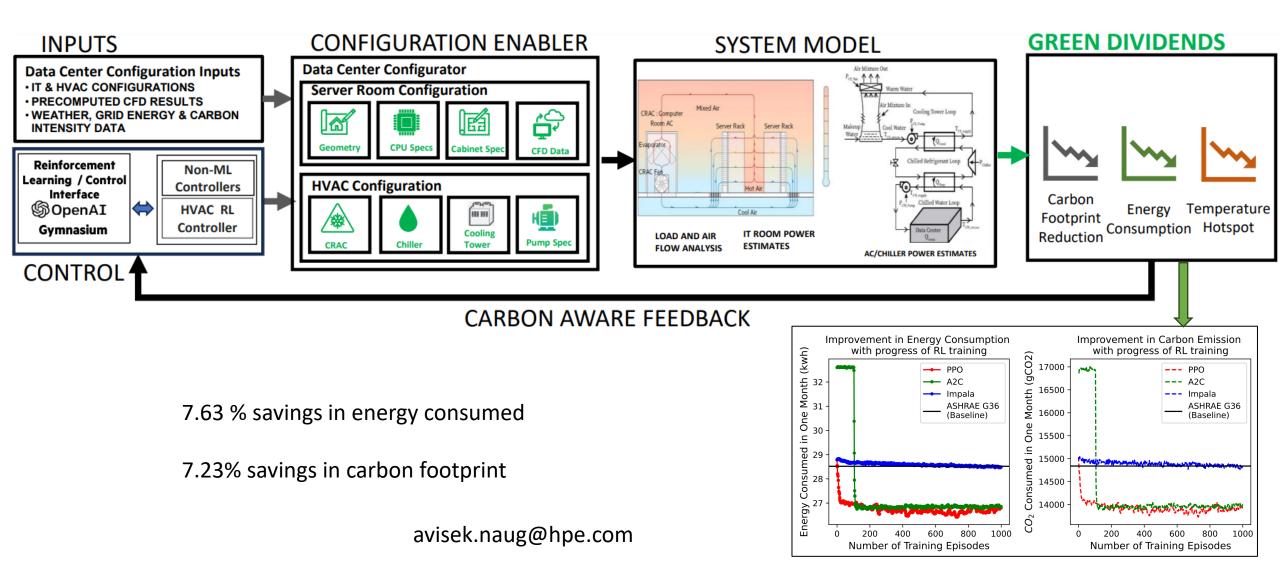
Parameter	Description	Example	
		Value	
NUM_ROWS	# of rows in the data center	5	
NUM_RACKS_PER_ROW	# of racks per row	10	
CPUS_PER_RACK	# of CPUs per rack	40	
RACK_SUPPLY_	Supply temperatures for	[22, 22.5,]	
APPROACH_TEMP_LIST	each rack		
C_AIR	Air properties	1006	
CHILLER_COP	Chiller's coefficient of per-	6.0	
	formance		
IT_FAN_AIRFLOW_	LB Fan airflow ratios for IT	[0.0 0.6]	
RATIO_LB	equipment		
IT_FAN_AIRFLOW_	UB Fan airflow ratios for IT	[0.7 1.3]	
RATIO_UB	equipment		

avisek.naug@hpe.com


```
"data_center_configuration" :
    "NUM_ROWS" : 4,
    "NUM_RACKS_PER_ROW" : 5,
    "RACK_SUPPLY_APPROACH_TEMP_LIST" : [
                                         5.3, 5.3, 5.3, 5.3,
                                         5.0, 5.0, 5.0, 5.0,
                                         5.0, 5.0, 5.0, 5.0,
                                         5.3, 5.3, 5.3, 5.3
                                         ].
    "RACK_RETURN_APPROACH_TEMP_LIST" : [
                                         -3.7, -3.7, -3.7, -3.7,
                                        -2.5, -2.5, -2.5, -2.5,
                                         -2.5, -2.5, -2.5, -2.5,
                                         -3.7, -3.7, -3.7, -3.7
                                         ],
    "CPUS PER RACK" : 300
},
"hvac_configuration" :
    "C_AIR" : 1006,
    "RHO_AIR" : 1.225,
    "CRAC_SUPPLY_AIR_FLOW_RATE_pu" : 0.00005663,
    "CRAC_REFRENCE_AIR_FLOW_RATE_pu" : 0.00009438,
    "CRAC_FAN_REF_P" : 150,
    "CHILLER_COP" : 6.0,
    "CT_FAN_REF_P" : 1000,
    "CT_REFRENCE_AIR_FLOW_RATE" : 2.8315,
    "CW_PRESSURE_DROP" : 300000,
    "CW_WATER_FLOW_RATE" : 0.0011,
    "CW_PUMP_EFFICIENCY" : 0.87,
    "CT_PRESSURE_DROP" : 300000,
    "CT_WATER_FLOW_RATE" : 0.0011,
    "CT_PUMP_EFFICIENCY" : 0.87
```


Example JSON script for configuring data center

Visualization


Rack Outlet Temperature($^{\circ}C$) as a function of IT load ratio and CRAC set point

Temperature Distribution with Cold Air Containment

Control

Speed and Scalability

Comparison of method timings between implementations in EnergyPlus and PyDCM. Mean ± std. dev. of 10 simulations

Method	EnergyPlus	PyDCM	Reduction (%)
init	$1.05\mathrm{s}\pm23.6\mathrm{ms}$	$1.57\mathrm{ms}\pm 60.4\mathrm{\mu s}$	99.85
reset	$2.67\mathrm{s}\pm23.8\mathrm{ms}$	$0.03\mathrm{ms}\pm0.25\mathrm{\mu s}$	99.99
step	$0.46\mathrm{ms}\pm98.38\mathrm{\mu s}$	$0.13\mathrm{ms}\pm15.84\mathrm{\mu s}$	71.33

Total simulation time comparison between implementations in EnergyPlus and PyDCM for different RL episode lengths. Mean ± std. dev. of 10 simulations

Episode	EnergyPlus	PyDCM	Reduction (%)
30 days	$3.33\mathrm{s}\pm91.20\mathrm{ms}$	$0.34\mathrm{s}\pm42.20\mathrm{ms}$	89.79
7 days	$2.64\mathrm{s}\pm34.39\mathrm{ms}$	$0.09 \mathrm{s} \pm 1.86 \mathrm{ms}$	96.77

Comparison of Performance Metrics between implementations in EnergyPlus and PyDCM for RL Environments. Mean ± std. dev. of 10 simulations

Metric	EnergyPlus	PyDCM	Reduction (%)
Wait. Time	$1.48s \pm 0.22s$	$0.27\mathrm{s}\pm0.48\mathrm{ms}$	81.55
Sample Time	$9.28 \pm 0.51 \mathrm{s}$	$3.95\mathrm{s}\pm16.20\mathrm{ms}$	57.34

Conclusions

- Developed a data center modeling and control-enabling framework
- Demonstrated it resource effectiveness and speed compared to current implementations

Future Work

- Add Cooling technologies like liquid cooling
- Load-shifting workloads and battery optimization presents a further refinement with multiagent RL

Thank you! Questions?