Segment-then-Classify: Few-shot Instance Segmentation for Environmental Remote Sensing

Yang Hu, Kelly Caylor, Anna Boser

NeurIPS 2023 Workshop Tackling Climate Change with Machine Learning

Instance segmentation is pivotal for environmental science

Instance Segmentation:

- Classify
- Delineate Boundaries

Land cover classification

Glacier monitoring

Current methods require extensive training data

Boxes found

Binary Masks for each box

Fused Instance Segmentation Output

Conventional Approach

- Detect-then-Segment
- Require **extensive** training data

Data Scarcity

UC SANTA BARBARA

YOLOv8: A state-of the-art model using the Detect-then-Segment strategy

The Segment-then-Classify (STC) Strategy

UC SANTA BARBARA

Step 1: Automated Instance Mask Generation

• Use Segment Anything Model (SAM)'s "everything" mode

Step 2: Filter with a classification model

• The only step that requires training

STC outperforms YOLOv8 on small datasets

Good Performance in Certain Scenarios

Good

 Distinct, regular shapes and clear boundaries

Moderate

• Closely spaced fields

Bad

 Relatively small objects on cluttered backgrounds

Key takeaways

• Segment-then-Classify: a data-efficient strategy

• Good at geometrically well-defined objects

• Future work: Fine-tuning for better performance