Extreme Event Prediction with Multi-agent Reinforcement Learningbased Parametrization of Atmospheric and Oceanic Turbulence

Rambod Mojgani (rm99@rice.edu),

Daniel Waelchli, Yifei Guan, Petros Koumoutsakos, Pedram Hassanzadeh

Why Machine Learning?

- Climate models are deficient in representing small scales and some physical phenomena
- Learn from observations to account for the sub-grid scale phenomena

Why Reinforcement Learning?

- Training in small data-regime
- Training on low-order statistics of the system (we do not have over-resolved snapshots of the states)
- Incorporating physics of sub-grid scale model for generalizability

Muli-Agent Reinforcement Learning

State:

Invariants of the state of the flow and

compute local SGS

 $\frac{\mathrm{d}\omega}{\mathrm{d}t} = \mathcal{F}(\overline{\omega}, \overline{\psi}) + \Pi$

simulate 2D

instantaneous enstrophy spectrum

- Action: \bullet Empirical coefficients of physics-based models (Smagorinsky and Leith models)
- **Reward**:

Inverse of deviation from the enstrophy of the target flow

Environment: \bullet

In-house spectral flow solver

Results

 10^{-2}

 10^{-4} -

 10^{-6}

 10^{-8}

 10^{0}

 10^{1}

 $\sqrt{\kappa_x^2 + \kappa_y^2}$

 $\hat{E}(\kappa_x)|$

 2π

x

 10^{-2} -

10-3

 10^{-4}

 10^{-5}

 10^{-6}

 10^{-7}

-6

-4

-2

 $\omega/\sigma(\omega)$

 $\mathcal{P}\left(\omega / \sigma(\omega)
ight)$

 10^{2}

Future Direction

• Interpretation

Low dimensional embedding of the learned actions

compute local states $S_{t+1} = \{\lambda^{\nabla \overline{u}}, \lambda^{\nabla \nabla \overline{u}}, \hat{\varepsilon}\}$

Cite this work: Mojgani, R., Waelchli, D., Guan, Y., Koumoutsakos, P., & Hassanzadeh, P. (2023). Extreme Event Prediction with Multi-agent Reinforcement Learningbased Parametrization of Atmospheric and Oceanic Turbulence. ArXiv, abs/2312.00907.