Exploring the Causal Relationship between **Environment, Clouds, Aerosol, and Precipitation Properties using Machine Learning**

Piyush Garg, Virendra P. Ghate, Maria Cadeddu, Bethany Lusch Argonne National Laboratory, Lemont, IL

Contact: pgarg@anl.gov

INTRODUCTION AND MOTIVATION

Current weather and climate models do not accurately represent lowlevel cloudiness and the associated precipitation. Detailed observations made at the Atmospheric Radiation Measurement (ARM) observatories provide an opportunity to identify causal relationships between largescale environments, clouds, aerosol, and drizzle properties, which would help us constrain warm rain initiation in the microphysics schemes.

Bayesian networks or causal probabilistic networks, are graphical models used to represent and analyze probabilistic relationships between variables. A Bayesian network consists of nodes (for each variable) and directed edges (connecting the nodes), which represent the probabilistic dependencies between variables. Structural learning is the process of inferring the causal structure of a Bayesian network from the data. We applied structural learning with Bayesian networks by

ARM DATASET

ARM East North Atlantic (ENA; 28°W, 39.5°N, 25 m ASL) site has been operational since 2013 and has multiple instruments to make detailed observations of surface, dynamic, thermodynamic, radiative, aerosol, and cloud fields. We used the ARM dataset from 2015 – 2021 for all weather regimes to obtain a robust causal relationship.

CAUSAL ML

We applied Directed Acyclic Graphs (DAG) with Noncombinatorial Optimization via Trace Exponential and Augmented lagRangian for Structure learning (NOTEARS; Zheng et al., 2018) using MLP neural networks using *PyTorch* library. In this method, continuous optimization is performed by applying global updates in each iteration, thus avoiding assumptions related to the local structure of the graph. We also compared our causal ML results with Random Forest (RF) algorithm, which is a traditional ML algorithm.

implementing directed acyclic graphs using neural networks.

Objective: Apply Deep Learning to create Bayesian Networks to learn the relationship between environment, cloud, and aerosol properties with drizzle characteristics.

Figure 1: ARM-ENA Site Courtesy: Tozer et al., 2019)

CAUSAL DAG FOR LWP_c

We have performed our analysis on the lower (25th) and upper (75th) quantile and have categorized our predictand variables in two separate classes to identify causal relationships for the tail ends of the distribution. In this way, we avoided any overlap between the two classes due to instrument-related uncertainty in the dataset.

Note that LWP_c is strongly influenced by environment (LTS, T_{adv}, PWV), followed by aerosol (SC, #C) and cloud (NET) properties.

DAG-NOTEARS v/s RANDOM FOREST

Figure 2: Causal DAG with normalized edge weights (colors) and CATE scores for LWP_c

- matrix for LWP_c

CONCLUSIONS

- DAG-NOTEARS Framework was successfully implemented to ARM observations to identify causal relationships between environment, cloud, aerosol, and precipitation properties.
- Cloud liquid water path (LWP_c) is primarily impacted by environmental (temperature advection, LTS, PWV), cloud (NET), and aerosol (number conc, scattering) properties, thus suggesting a concurrent role of local and large-scale environment.
- Rain rate prediction has the highest accuracy trailed by cloud optical depth, cloud liquid water path and diameter.

CONCLUSIONS (CONTD)

- Rain rate shows a high conditional treatment effect by Cloud liquid water path, followed by environmental (LTS, T_{adv}), aerosol number concentration, and cloud top net radiative cooling.
- Drop diameter has the most number of direct edges with a dominant effect from cloud liquid water path, followed by rain rate and LTS.
- Cloud optical depth also depicts high CATE and weights from cloud liquid water path, rain rate, precipitable water vapor and aerosol number concentration.

REFERENCES

Zheng, Xun, Bryon Aragam, Pradeep K. Ravikumar, and Eric P. Xing. "DAGs with **NOTEARS:** Continuous optimization for structure learning." Advances in neural information processing systems 31 (2018).

Tozer, B, Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., & Wessel, P. (2019). Global bathymetry and topography at 15 arc sec: SRTM15+. *Earth and Space* Science, 6, 1847-

1864. https://doi.org/10.1029/2019EA000658

