

Inference of CO₂ flow patterns - a feasibility study

Abhinav P Gahlot² Huseyin Tuna Erdinc¹ Rafael Orozco¹ Ziyi Yin¹ Mathias Louboutin^{2,4} Felix J. Herrmann^{1,2,3}

Thursday, November 9, 2023

⁴now at Devito Codes

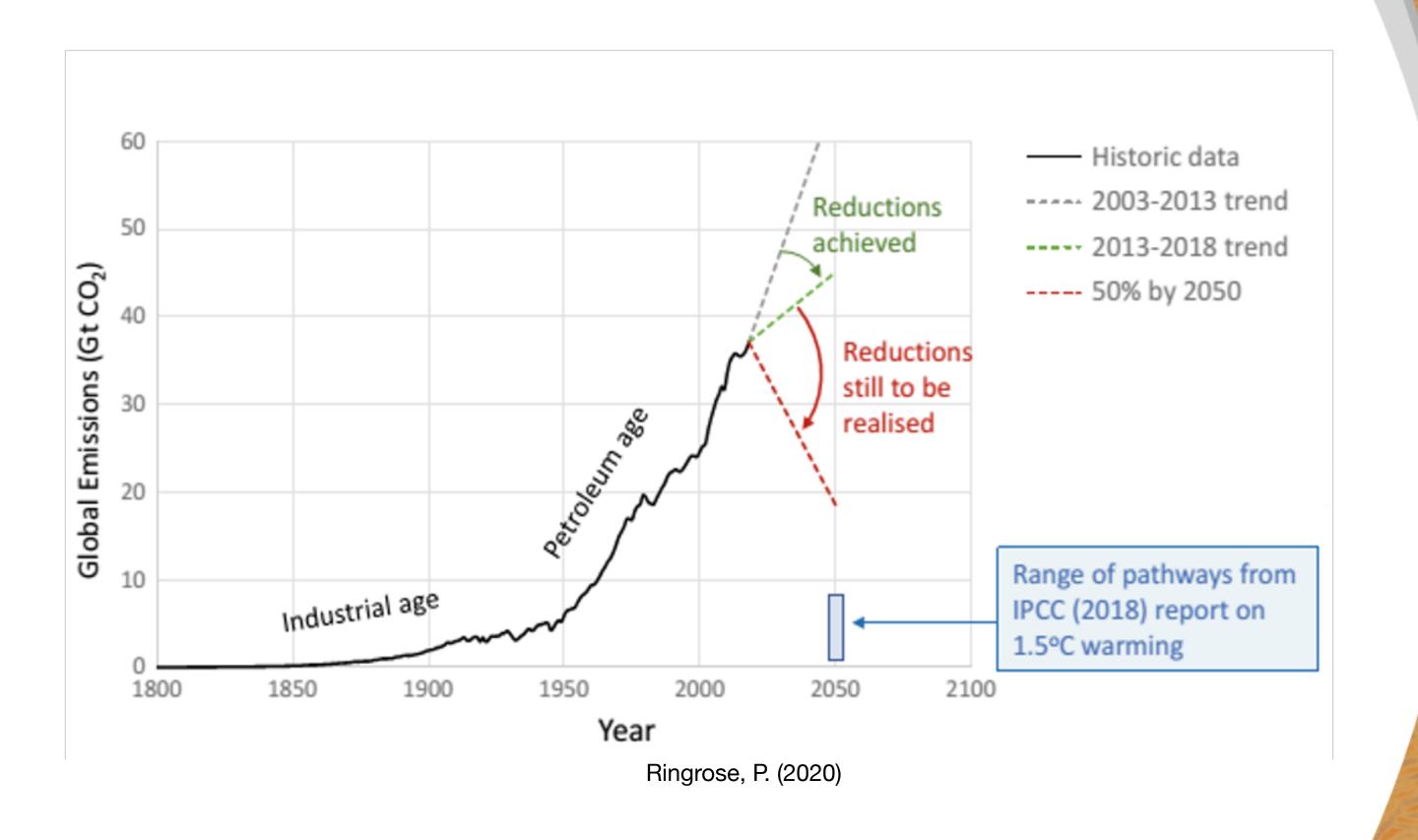
NeurlPS'23

Background

Geological Carbon Storage (GCS): What is it?

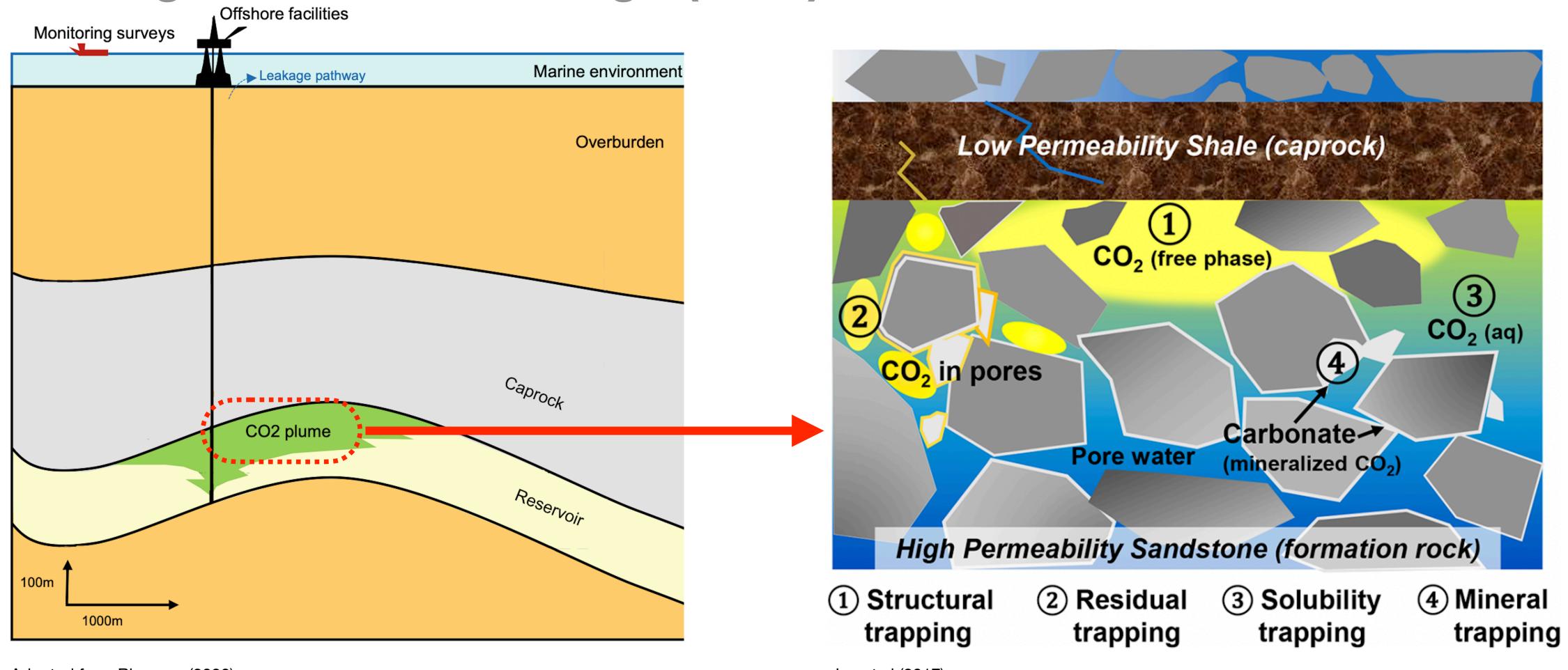
Involves capturing, transporting, and storing greenhouse gas emissions in the ground

50% reduction of greenhouse gas emissions required by 2050 to avoid 1.5 °C (IPCC 2018).



Background Geological Carbon

Geological Carbon Storage (GCS): How is it stored?



Adapted from Ringrose (2020)

Jun et al (2017)

Background

Geological Carbon Storage (GCS): Is there a risk?

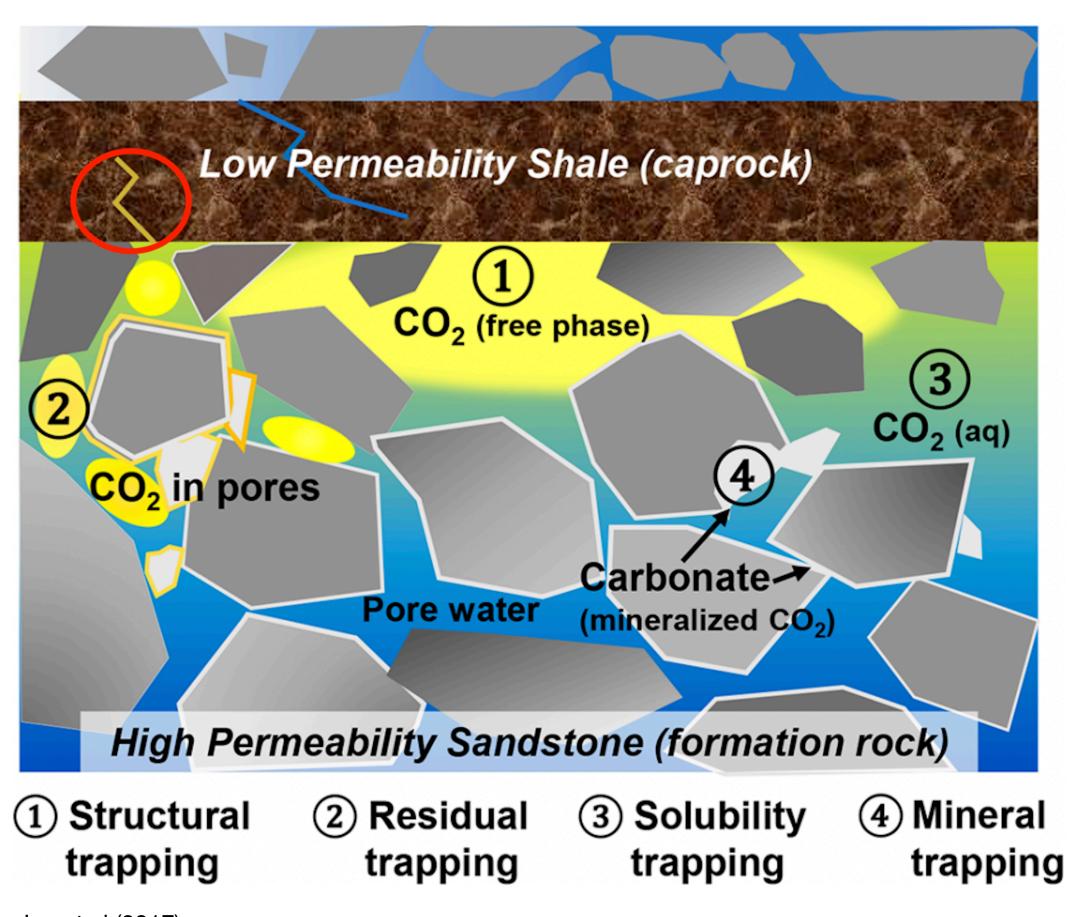
Leakage

Exceeding fracture pressure due to injection

Pre-existing faults

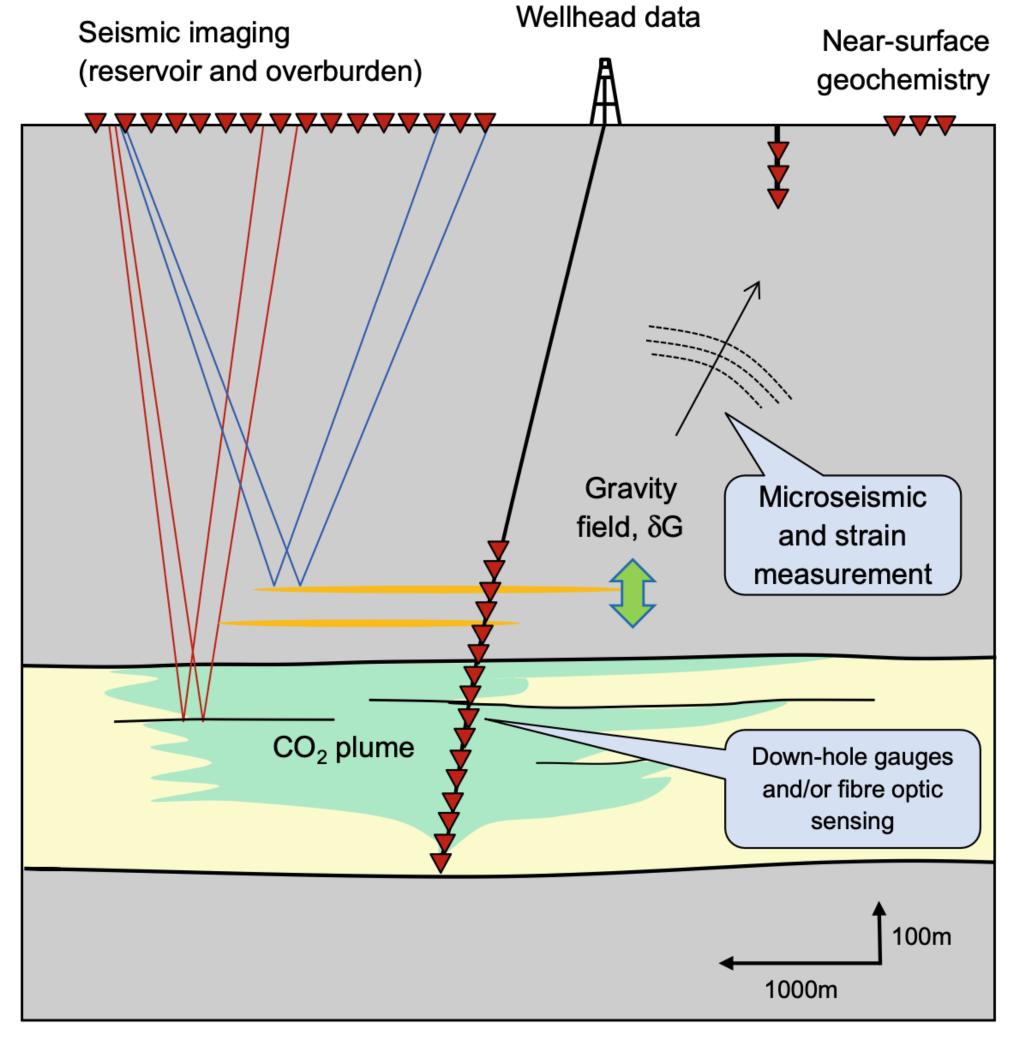
Imperfect storage sealing

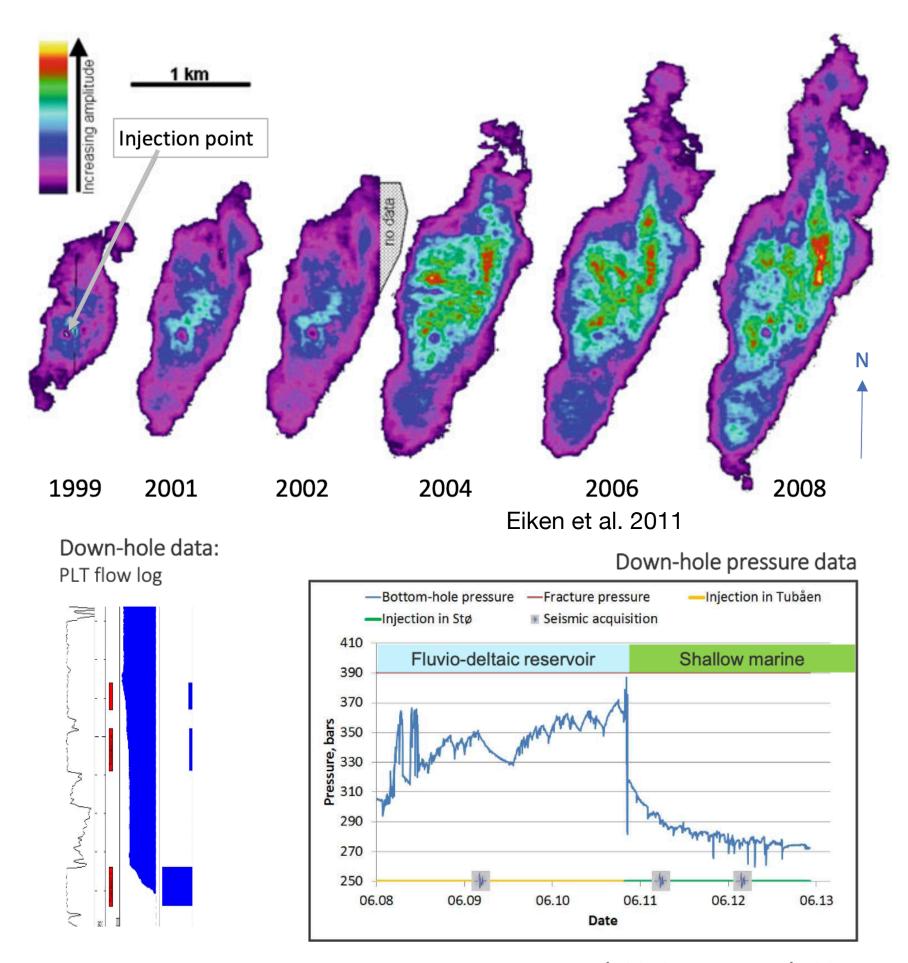
Abandoned wells



Jun et al (2017)

Backgroundgeophysical time-lapse monitoring : GCS application





Motivation

CO₂ plume forecasts based on fluid flow simulations alone are uncertain

- ► can *not* expect *precise* predictions of regular & irregular flow
- ▶ need to constrain CO₂ plumes by incorporating monitoring data

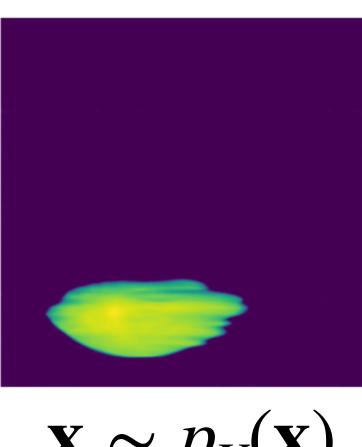
Calls for a principled approach using techniques from ML & data assimilation to

- ► incorporate time-lapse well & seismic data jointly
- ► assess uncertainty in CO₂ plumes to inform policy decisions

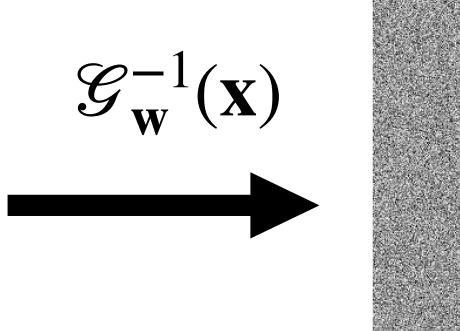
Methodology

Training & sampling

w/ Normalizing Flows (NFs)

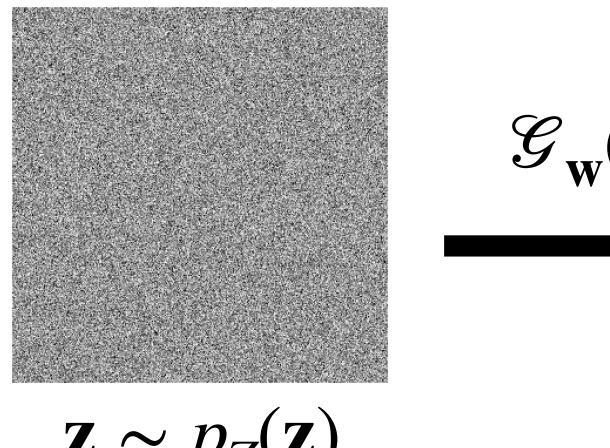


$$\mathbf{x} \sim p_X(\mathbf{x})$$

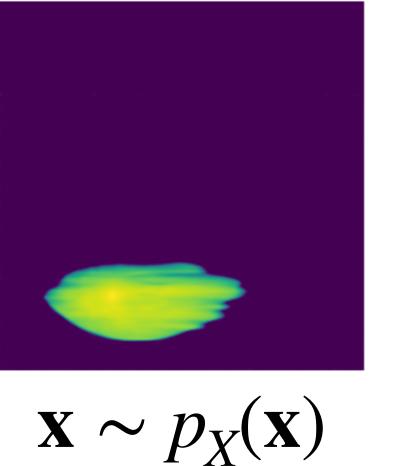


$$\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})$$

Sampling:



$$\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})$$



Simulation-based inference w/ conditional Normalizing Flows (CNFs)

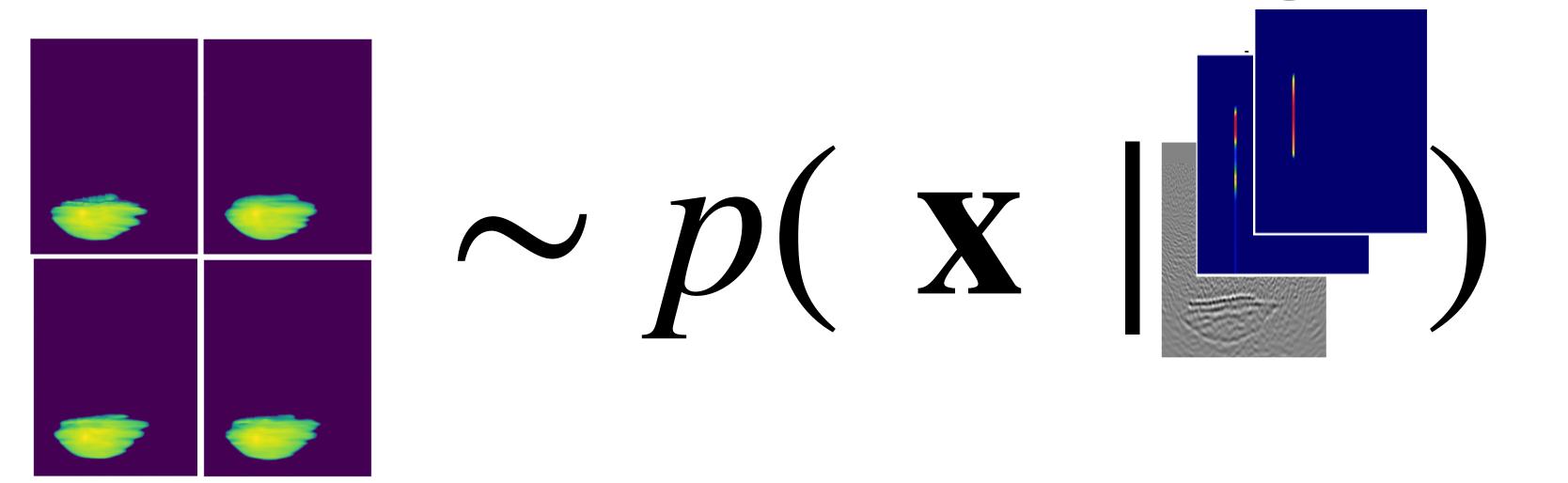
$$\mathbf{x} \sim p(\mathbf{x} \mid \mathbf{y})$$

Given simulated training pairs (x, y)

- ightharpoonup amortized training of CNFs to sample from the posterior $p(\mathbf{x} \mid \mathbf{y})$ for any \mathbf{y}
- ightharpoonup when trained, CNFs solve inference problems by generating samples $\mathbf{x} \sim p(\mathbf{x} \,|\, \mathbf{y}^*)$
- ► samples are conditioned on observed data, y*

Simulation-based inference

w/ CO₂ saturation/pressure at wells & imaged seismic

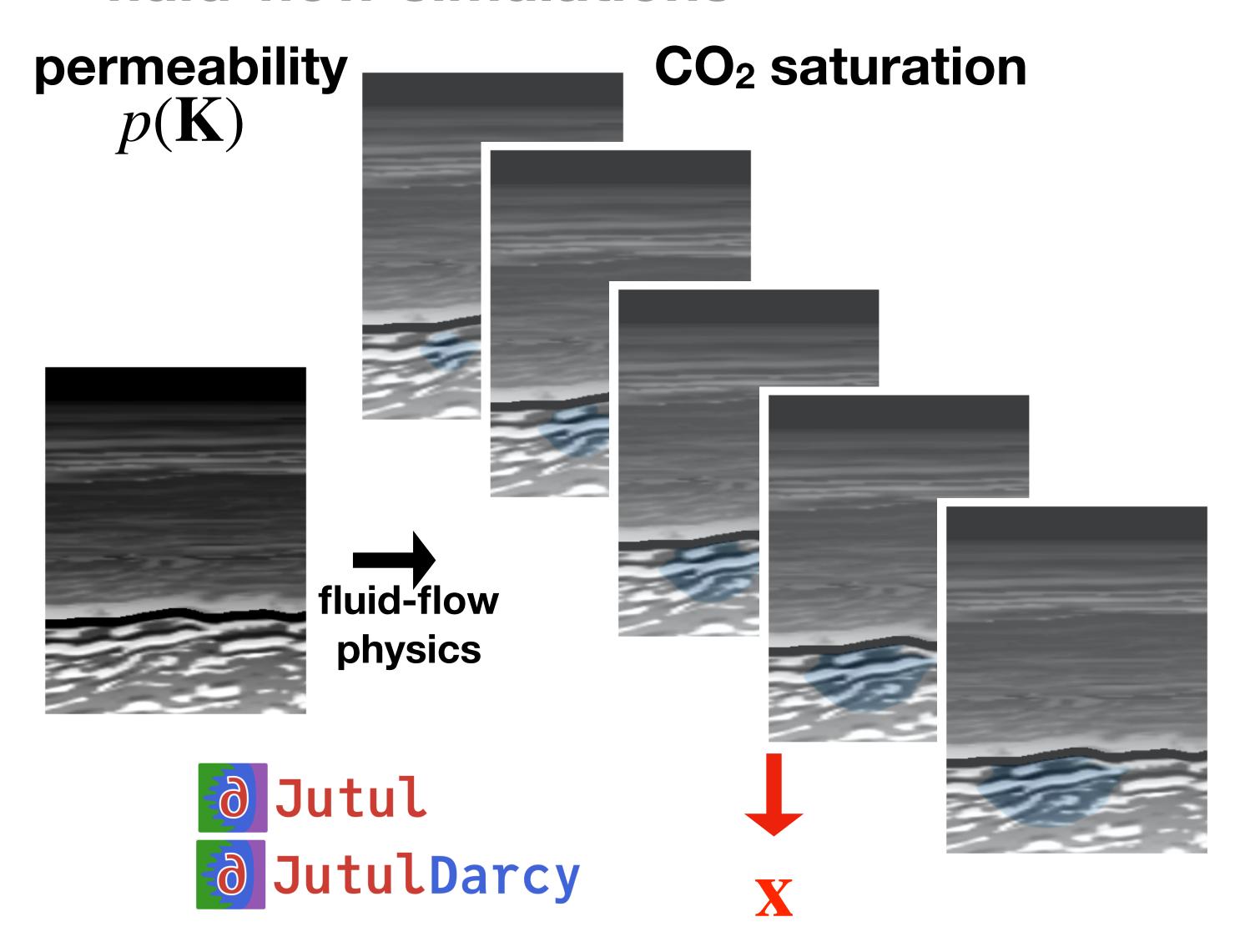


Given simulated training pairs (\mathbf{x}, \mathbf{y}) for the CO₂ saturation & saturation/pressure at wells

- ightharpoonup amortized training of CNFs to sample from the posterior $p(\mathbf{x} \mid \mathbf{y})$ for any \mathbf{y}
- ▶ when trained, CNFs solve inference problems by generating samples $\mathbf{x} \sim p(\mathbf{x} \mid \mathbf{y}^*)$
- ► sampled CO₂ saturations are conditioned on observed CO₂ saturation/pressure & seismic data, **y***

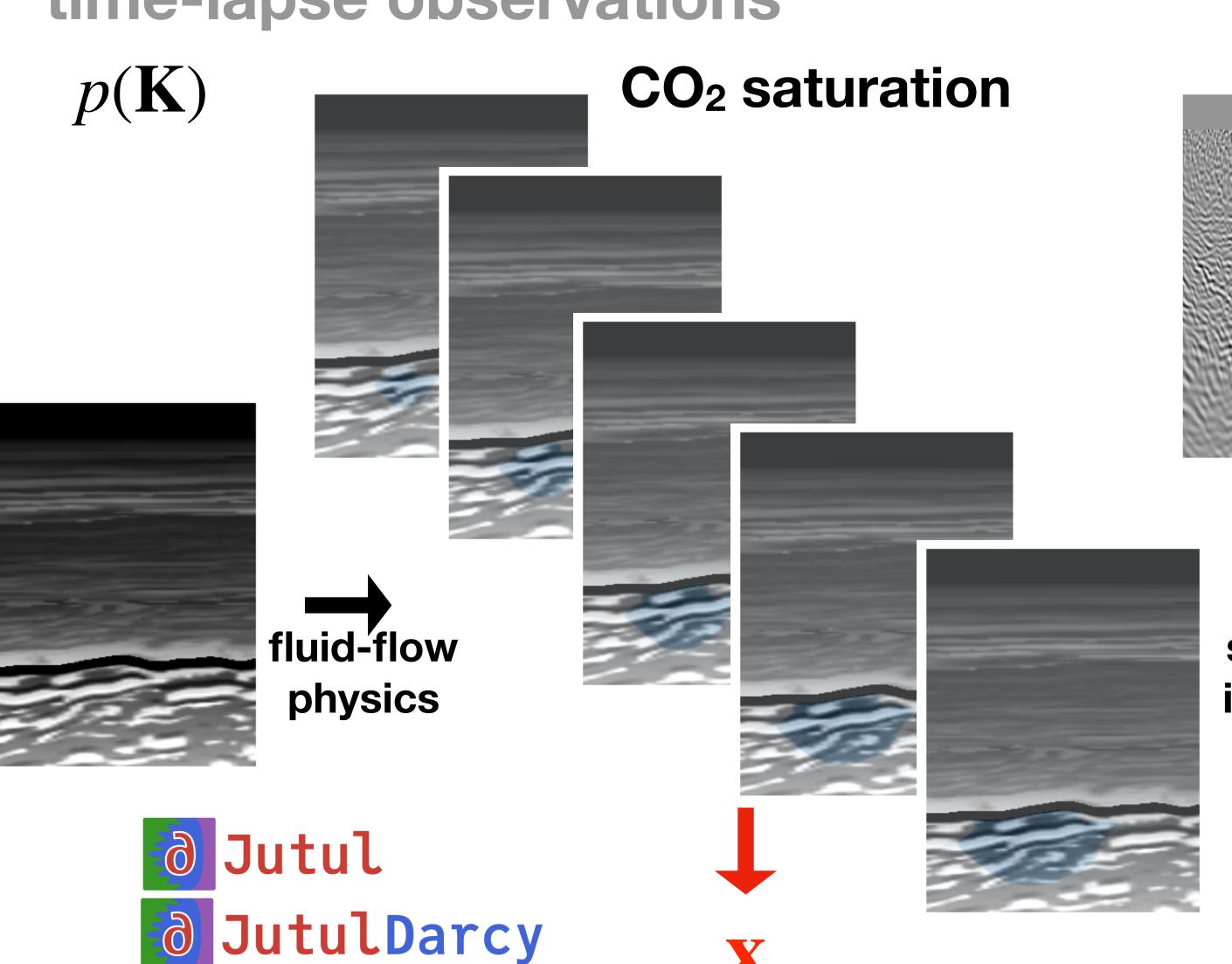
Dataset Generation

fluid-flow simulations

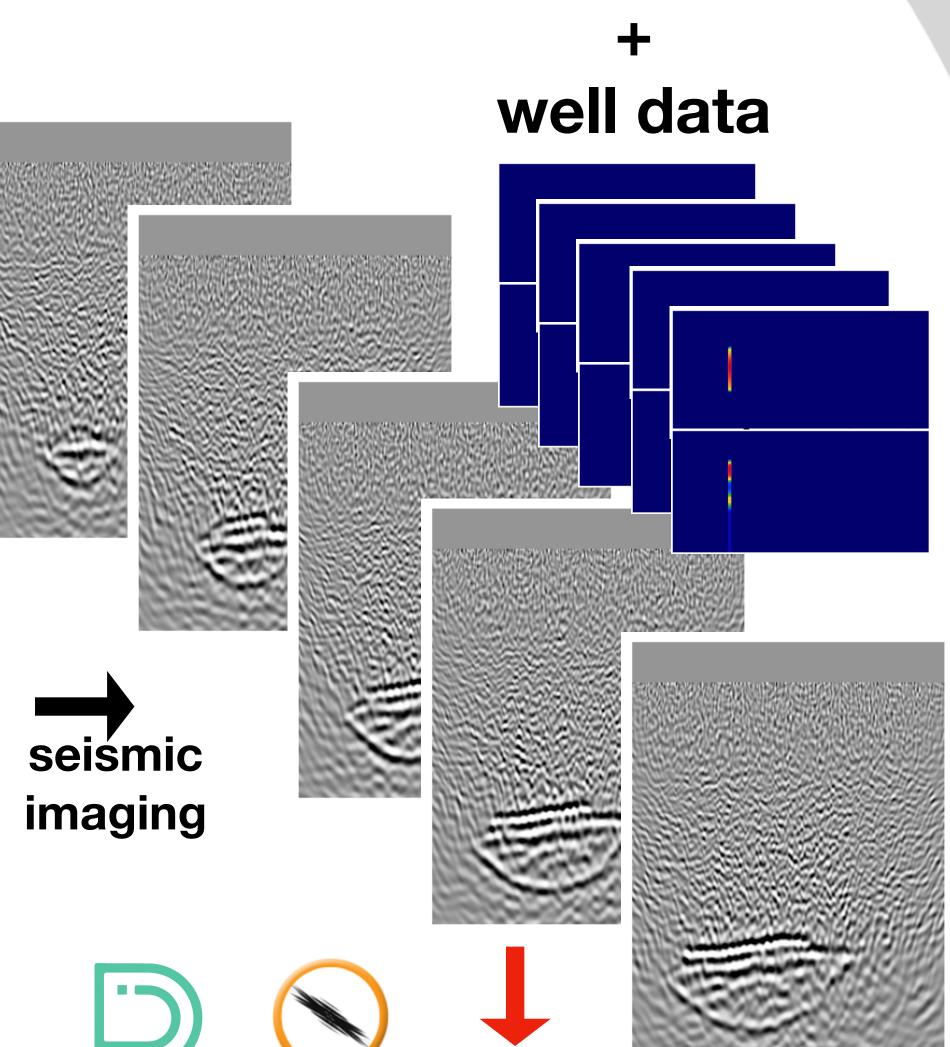


Dataset Generation

time-lapse observations



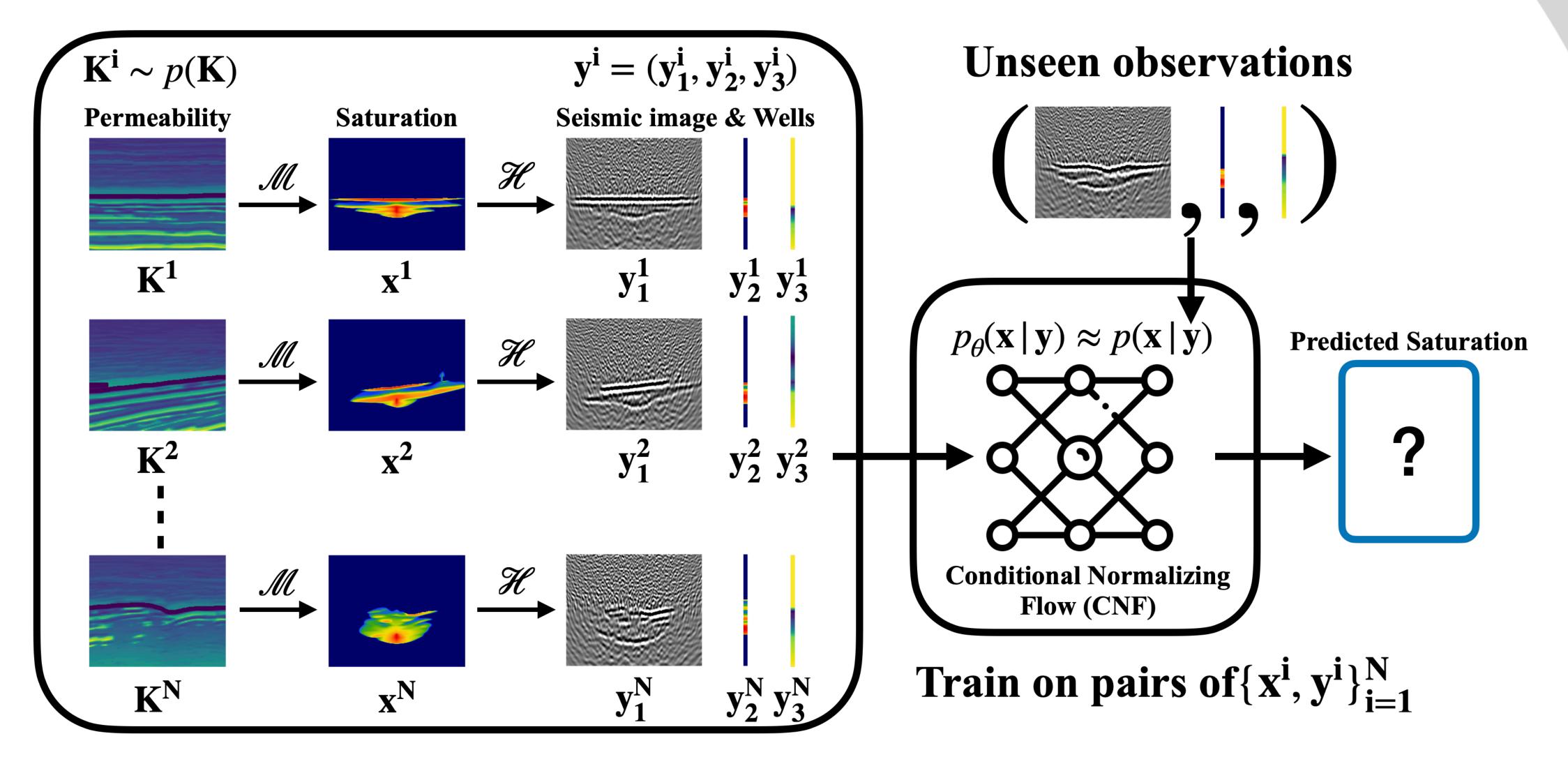
seismic images



DEVITO

Training Configuration & Results

Training & Testing Schematic

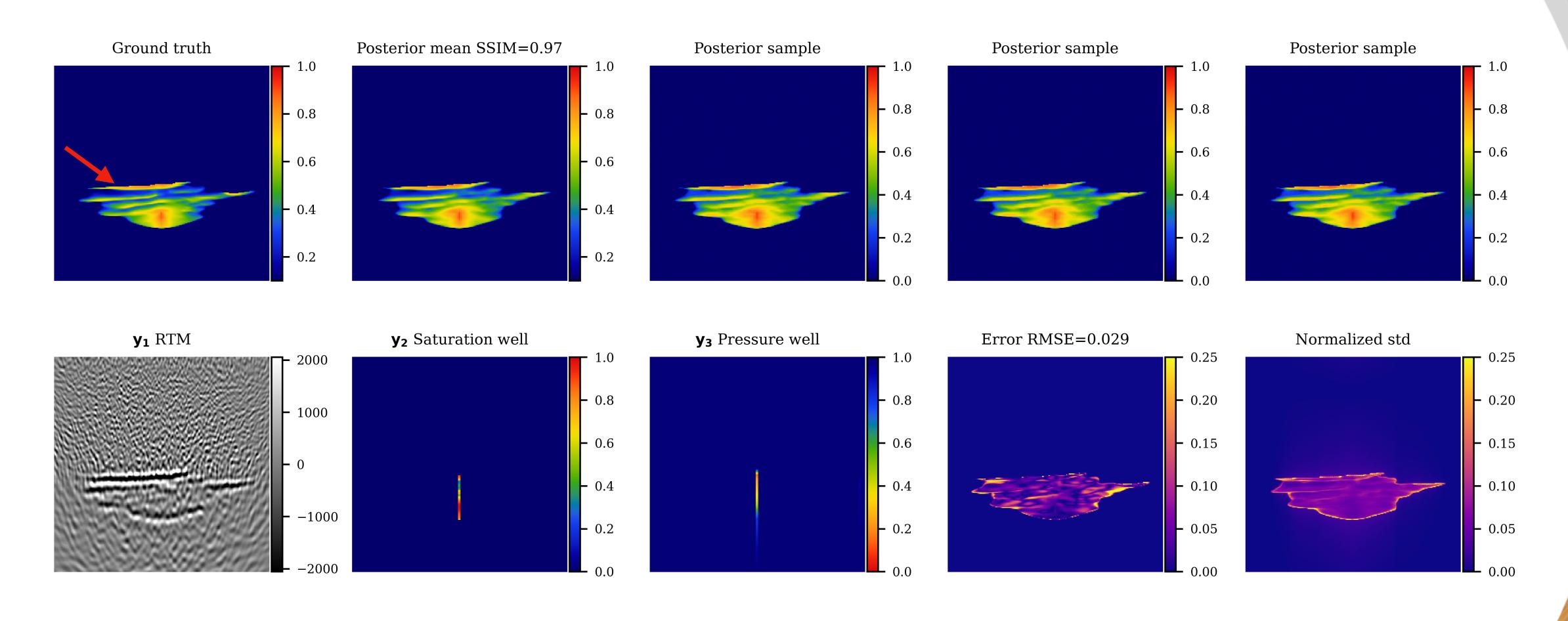


M dynamics operator

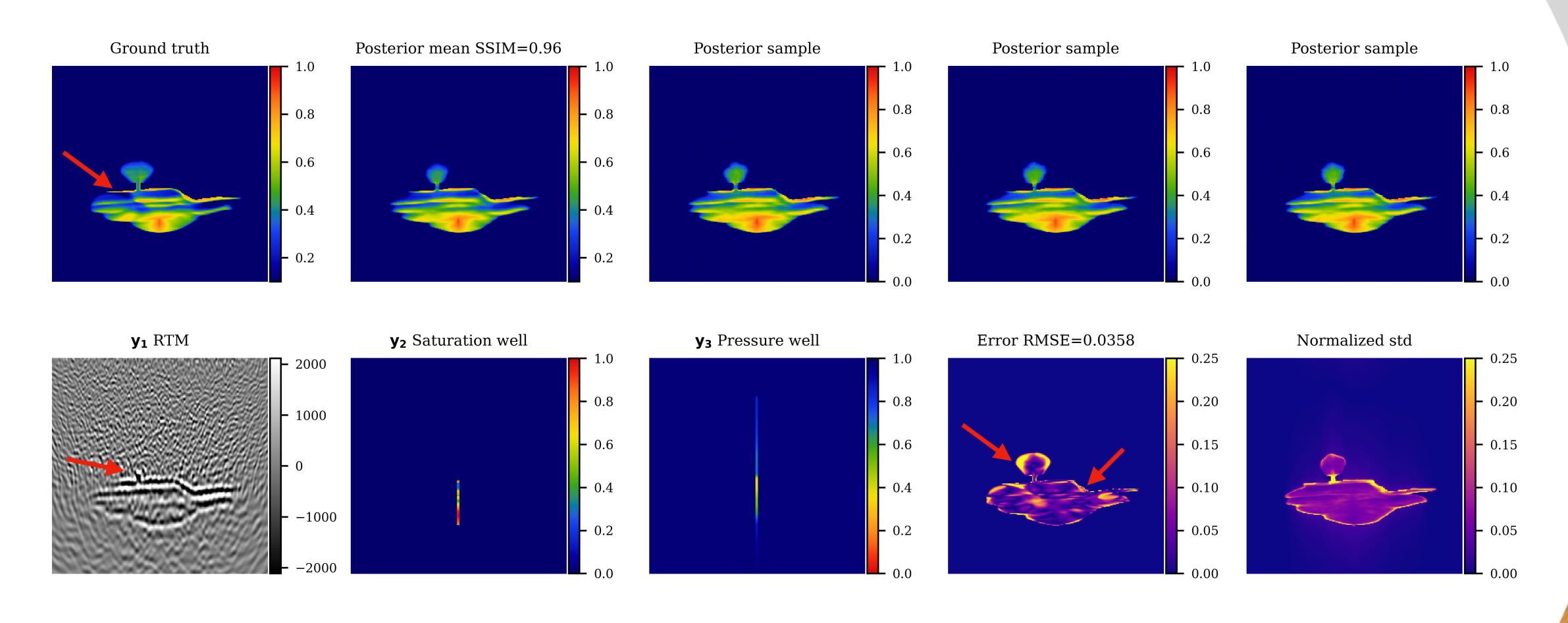
observation operator

K permeability model

Results no-leakage scenario



Results leakage scenario



Acknowledgement

This research was carried out with the support of Georgia Research Alliance and partners of the ML4Seismic Center and in part by the US National Science Foundation grant OAC 220382.