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Geological Carbon Storage (GCS): What is it?

Involves capturing, 
transporting, and storing 
greenhouse gas emissions in 
the ground


50% reduction of greenhouse 
gas emissions required by 
2050 to avoid 1.5 C (IPCC 
2018).


∘

Ringrose, P. (2020)

Ringrose, P. 2020. How to store CO2 underground: Insights from early-mover CCS Projects, volume 129. Springer.
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Geological Carbon Storage (GCS): How is it stored?

Adapted from Ringrose (2020) Jun et al (2017)

Ringrose, P. 2020. How to store CO2 underground: Insights from early-mover CCS Projects, volume 129. Springer.

Jun, Y.-S.; Zhang, L.; Min, Y.; and Li, Q. 2017. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO2 Sequestration. Accounts of 
Chemical Research, 50(7): 1521–1529. PMID: 28686035.



Background
Geological Carbon Storage (GCS): Is there a risk?

Leakage


Exceeding fracture pressure due to 
injection


Pre-existing faults


Imperfect storage sealing


Abandoned wells

Jun, Y.-S.; Zhang, L.; Min, Y.; and Li, Q. 2017. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO2 Sequestration. Accounts of 
Chemical Research, 50(7): 1521–1529. PMID: 28686035.

Jun et al (2017)
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geophysical time-lapse monitoring : GCS application

Eiken, O.; Ringrose, P.; Hermanrud, C.; Nazarian, B.; Torp, T. A.; and Høier, L. 2011. Lessons learned from 14 years of CCS operations: Sleipner, In Salah, and Snøhvit. 

Ringrose, P. 2020. How to store CO2 underground: Insights from early-mover CCS Projects, volume 129. Springer.

Adapted from Ringrose (2020)

Eiken et al. 2011
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Motivation

CO2 plume forecasts based on fluid flow simulations alone are uncertain


‣ can not expect precise predictions of regular & irregular flow


‣ need to constrain CO2 plumes by incorporating monitoring data


Calls for a principled approach using techniques from ML & data assimilation to


‣ incorporate time-lapse well & seismic data jointly


‣ assess uncertainty in CO2 plumes to inform policy decisions

Wood et. al, Locked away – geological carbon storage, The Royal Society, October 2022 
Ringrose, Philip. How to store CO2 underground: Insights from early-mover CCS Projects, 2020.

https://royalsociety.org/topics-policy/projects/low-carbon-energy-programme/geological-carbon-storage/
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Methodology
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Training & sampling
w/ Normalizing Flows (NFs)

Kobyzev, Ivan, Simon Prince, and Marcus Brubaker. "Normalizing flows: An introduction and review of current methods." IEEE Transactions on 
Pattern Analysis and Machine Intelligence (2020).

x ∼ pX(x) z ∼ pZ(z)

z ∼ pZ(z) x ∼ pX(x)

Training:

Sampling:

𝒢−1
w (x)

𝒢w(z)
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Simulation-based inference
w/ conditional Normalizing Flows (CNFs)

Given simulated training pairs 


‣ amortized training of CNFs to sample from the posterior  for any 


‣when trained, CNFs solve inference problems by generating samples  


‣ samples are conditioned on observed data, 

(x, y)

p(x |y) y

x ∼ p(x |y*)

y*

x ∼ p( x | y )

Ardizzone, Lynton, et al. "Conditional Invertible Neural Networks for Guided Image Generation." (2019).

Radev, Stefan T., et al. "BayesFlow: Learning complex stochastic models with invertible neural networks." IEEE transactions on neural networks and learning systems 33.4 (2020)

Cranmer, Kyle, Johann Brehmer, and Gilles Louppe. "The frontier of simulation-based inference." Proceedings of the National Academy of Sciences 117.48 (2020): 30055-30062



ML4SeismicSimulation-based inference
w/ CO2 saturation/pressure at wells & imaged seismic

x ∼ p( x | y )
Given simulated training pairs  for the CO2 saturation & saturation/pressure at wells


‣ amortized training of CNFs to sample from the posterior  for any 


‣when trained, CNFs solve inference problems by generating samples  


‣ sampled CO2 saturations are conditioned on observed CO2 saturation/pressure & 
seismic data, 

(x, y)

p(x |y) y

x ∼ p(x |y*)

y*



fluid-flow simulations
Dataset Generation

fluid-flow 
physics

permeability CO2 saturation 

x

Møyner, O., et.al. 2023. Sintefmath/Jutul.jl: V0.2.5 (version v0.2.5). Zenodo. https://doi.org/10.5281/zenodo.7775759


 p(K)

https://doi.org/10.5281/zenodo.7775759


time-lapse observations

fluid-flow 
physics

seismic  
imaging

 p(K) CO2 saturation 

x y

seismic images 
+ 

well data

Dataset Generation
Møyner, O., et.al. 2023. Sintefmath/Jutul.jl: V0.2.5 (version v0.2.5). Zenodo. https://doi.org/10.5281/zenodo.7775759

Luporini, F., et. al. 2022. devitocodes/devito: v4.6.2 (v4.6.2). Zenodo. https://doi.org/10.5281/zenodo.6108644 
Witte, P., et.al. 2020. slimgroup/JUDI.jl: DOI release (v2.0.2). Zenodo. https://doi.org/10.5281/zenodo.3878711

https://doi.org/10.5281/zenodo.7775759
https://doi.org/10.5281/zenodo.6108644
https://doi.org/10.5281/zenodo.3878711
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Training Configuration & Results



Training & Testing Schematic
Witte, P., et.al. 2021. slimgroup/InvertibleNetworks.jl: v2.1.0 (v2.1.0). Zenodo. https://doi.org/10.5281/zenodo.5761654

 dynamics operator       observation operator     permeability modelℳ ℋ K

https://doi.org/10.5281/zenodo.5761654


no-leakage scenario
Results



leakage scenario
Results
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