







Bundesministerium für Bildung und Forschung



Finanziert von der Europäischen Union NextGenerationEU

# Towards Understanding Climate Change Perceptions: A Social Media Dataset

Katharina Prasse, Steffen Jung, Isaac Bravo, Stefanie Walter, Margret Keuper

Tackling Cimate Change with Machine Learning: NeurIPS Workshop 2023



#### www.uni-siegen.de

Image credits: https://twitter.com/russellcrowe/status/1208886106512478208

### Why do we need climate change datasets?

Insights into climate change communication on Twitter.

 Increased effectiveness of climate change communication, public engagement, and climate change education.

 Challenging image classification datasets comprised of real-world climate change images.

### How do we perceive climate change?

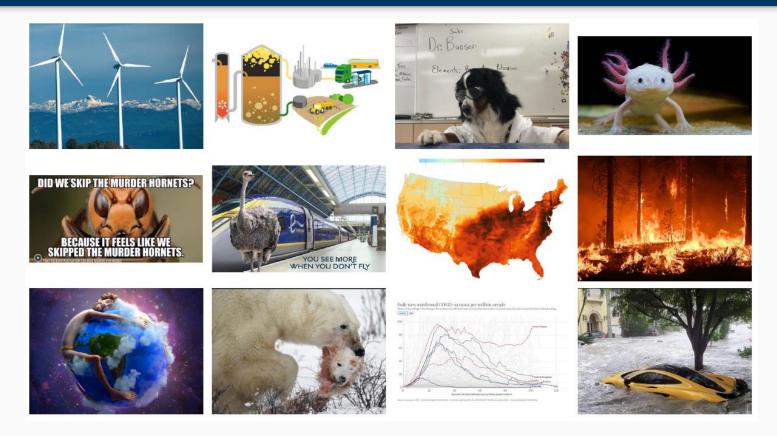


Figure 1: Example images contained in our datasets

## Our datasets pose challenging classification tasks

#### ClimateTV

- Images tweeted between 01/01/2019 12/31/2019
- Hashtag #climatechange or mention "climate change" or "climatechange"
- Hashtag-based annotations for 700,000
   images based on SONAR embeddings<sup>1</sup>
- Suitable for large vision and language models

#### ClimateCT

- Popular images tweeted between 01/01/2019 – 12/31/2022
- Hashtag #climatechange or mention "climate change" or "climatechange"
- Manual annotations for 1,000 images by two independent annotators
- Suitable for qualitative analysis of classification results

### Our climate change annotation scheme

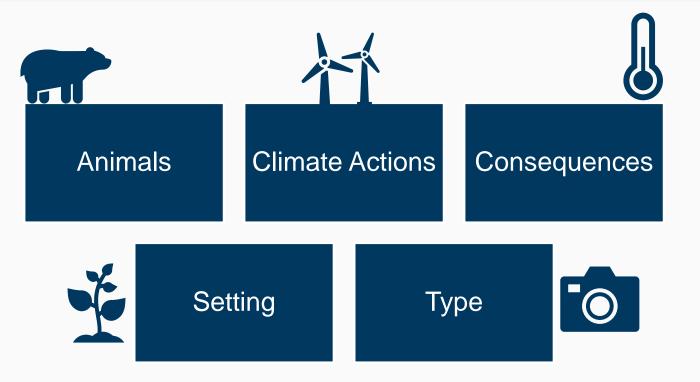


Figure 2: Annotation scheme designed on basis of climate change literature

### **Class Prevalences within Climate Change Consequences**

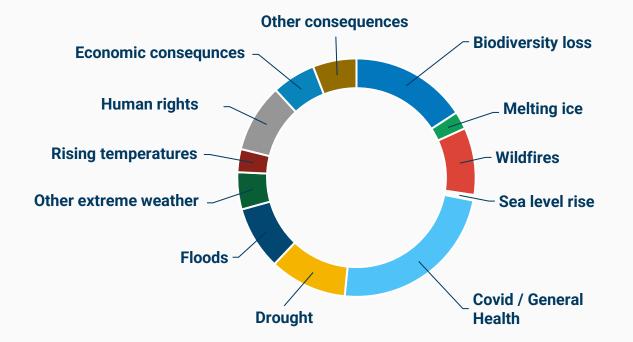


Table 3: **ClimateTV** class overview for the category Consequences

| Model          | CLIP  |       | СоСоОр |       |
|----------------|-------|-------|--------|-------|
| Dataset        | СТ    | TV    | СТ     | TV    |
| Animals        | 64.68 | 28.52 | 58.94  | 9.32  |
| Climate action | 46.95 | 31.26 | 58.68  | 59.76 |
| Consequences   | 40.51 | 23.62 | 69.52  | 33.06 |
| Setting        | 26.04 | 27.66 | 49.38  | 9.84  |
| Туре           | 51.64 | 49.82 | 76.70  | 69.90 |
| Average        | 45.96 | 32.18 | 54.08  | 36.38 |

#### Table 1: Classification accuracies for CLIP<sup>2</sup> and CoCoOp query optimization<sup>3</sup>

<sup>2</sup> A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from natural language supervision, 2021.

<sup>3</sup> K. Zhou, J. Yang, C. C. Loy, and Z. Liu. Conditional prompt learning for vision-language models. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

### **Thank You!**

**Contact** Katharina Prasse Universität Siegen H-C 8307

H-C 8307 Lehrstuhl für Visual Computing Hölderlinstraße 3 57076 Siegen

katharina.prasse@uni-siegen.de

https://www.vc.informatik.uni-siegen.de/en/prasse-katharina

