Ocean Wave Energy:
Optimizing Reinforcement
Learning Agents for
Effective Deployment

Vineet Gundecha?, Sahand Ghorbanpour?,

Ashwin Ramesh Babu?, Avisek Naug?,
Alexandre Pichard?, Mathieu Cocho?,
Soumyendu Sarkar*?

lHewlett Packard Enterprise
2Carnegie Clean Energy

Buoyant Actuator \Power Take-Off (PT

Climate Change Al

NEURAL INFORMATION
~ PROCESSING SYSTEMS

 Dynamic Cable

—

‘Mooring System




oG GED
5 . NEURAL INFORMATION

Motivation: Lowering the Levelized Cost of Wave Energy (LCOE) . PROCESSING SYSTEMS

* Increase in energy efficiency *Revenue
* Reduce structural stress |, Maintenance

* Protect from acute weather events

Carnegie Clean Energy’s CETO 6 Wave Energy Platform won the EuropeWave Phase 3
contract for deployment in BIMEP in Spain after evaluation for cost effective design
validation in Phase 2.
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Spread wavesP Complexity

Multiple Simultaneous Wave Fronts
from Different Directions with Different
Amplitudes and Principal Wave Periods
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Wave direction

Spread waves significantly increase complexity for WEC
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with simultaneous waves from different angles based on

atmospheric events at different parts of the ocean.



Variations of waves differ with locations » Complexity
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Occurance (%) of Wave Types at BIMEP deployment site
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Reinforcement Learning System Architecture

Action
Reactive Force controlling the Generators on the PTO of the 3 legs

Multi-Objective
Rewards
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Wave Sensors

000

Translational and Rotational

Wave Ejcitation

Position, Velocity, and|Acceleration up to 15s fh advance

of Buoy and Tgther

\ 4

Paper ID 31: Ocean Wave Energy: Optimizing RL Agents for Deployment

Environment

Soumyendu Sarkar @ HPE




State Design — Action Space — Reward shaping

State Design

position of the buoy with velocity and
acceleration for the translational and

rotational motion
rotational yaw motion to monitor stress
extension and velocity of tether

wave elevation and rate of change for

“

present and 10s ahead in time from sensors
s=[eeéggzz]’
where,
e - the buoy position,

g - the tether extension

Z - wave excitation

AllL RL agents share the continuous observation

space of position and wave.

Climate Change Al

Action Space
The continuous action space for the individual RL agent
defined by the reactive force f,., ;) for the controlled

generator, where “/” represents the index for the agent.

Reward

Reward; = a. (Pown(i) + ;. Pothers)

where,
P - generated power defined by, —f,,, * €.
n - the hyperparameter for the team coefficient,

g 75 .
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Co-opetition between multiple RL agents and Reward Shapin%im@@ %, PROCESSING SeTEMS
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Co-opetition between multiple RL agents and Hyper-parameter optimizations

* Multi-agent Co-opetition: Disparity in power and optimum
trade-off by individual legs, to get most combined power
in all legs, make the best solution a combination of co-
operation and competition for different agents.

Reinforcement Learning Agent Power-Gain Over Spring-Damper Model Baseline

e Multi-dimensional hyper-parameter optimization was key
for RL agent performance gains
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Novel STrXL Transformer architecture for RL beats SOTA @@ %i.,ﬁégééé;m?ﬁ%’#ﬂaz

Climate Change Al %%,

TrXL-I STrXL (Ours) Average % P(?wer Gain of RL Controller over
default Spring Damper for Spread Waves
L x F IL x L] 2
(- =) k & ™\ & FCN 11.6
N E LSTM 14.3
y 3 &
Position-\Wise > % GTrXL 20.6
MLP R < <
Position-Wise O O STrXL (ours) 22.1
MLF o W .
Layar-Morm w
il = 0 5 10 15 20 25
»D) & RL FUNCTION APPROXIMATION VARIANTS
P S
¥
Multi-Head !
Attentiony @ Tp=11 & Tp=12 @ Te=13
glg Attentiony B
La r‘-lhlurTn ‘E # ‘:E 2 é 2"
\ / (N / ﬁ as
: g &
* Our Novel STrXL beats State-of-the-art GTrXL transformer on g
training speed and performance for multi-agent RL for CETO 6 WEC L. &@f
e £ £ i
EE‘-ID %-10 %-lﬂ
* Transformers are hard to train for multi-agent RL P e e (TR W e [t e

Paper ID 31: Ocean Wave Energy: Optimizing RL Agents for Deployment Soumyendu Sarkar @ HPE



oo 320
Our Novel STrXL beats SOTA GTrXL on Performance % ;‘*Ngggé;s.mggys@rgag
RL Controller Power gain (%) over default spring damper (SD) controller for dlfferenﬂwn@féﬁb@ﬂ%romatlons

Spread Waves: RL % Gain of Energy Capture over default (SD controller)
% Gain for Wave Height = 2m

Wave Time Period(s) 6 7 8 9 10 11 12 13 14 15 16  Avg
FCN 152 154 120 11.7 122 102 135 8.4 92 101 94 11.6
LSTM 182 192 152 142 152 13.2 11 11 125 15.1 12,1 143
GTrXL 222 241 254 239 193 149 232 151 174 199 21 206
STrXL (ours) 23.1 252 242 252 214 223 254 172 202 205 182 221

Average % Power Gain of RL Controller over
default Spring Damper for Spread Waves
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Mechanical stress and Maintenance mitigation with ML Trust <D %, PROCESSNG SYaTEs
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* Yaw rotational motion of the voluminous buoy causes damaging mechanical stress and is higher
for angled waves.
* Penalty for yaw: Reward = (a) power + (1 — a) yaw,
where a is tunable, lesser a => stronger penalty.
e Result: Yaw is almost eliminated resulting in less maintenance compared to spring damper (SD).
* Reward shaping with yaw minimization improved power generation, as more power directed to
the generator
* Combined reward maximizes energy capture maximization and minimizes stress.

SURGE

RL % Power Gain over Spring Damper Yaw Reduction and Power Gain with Yaw Penalty for
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RL controller reduces stress : Yaw minimization | @@ 7 PROCRINEETRN
|Isometric view Bottom view
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Comparison of Yaw movement between RL and the spring
damper (SD) controllers for an episode with wave height of
2m and principal wave period of 12s. Values are relative to

maximum SD yaw.
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RL Controller % Yaw Reduction over default controller @@ ,“
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RL % Yaw Reduction from SD for Wave
Ht = 2m, Angle=30°

Average % Yaw Reduction of RL Controller over default Spring
FCN LSTM GTrXL STrXL Damper Controller with Wave Ht=2m at 30° angle, TP=115-163
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Deployment specific RL controller tuning with Spread Waves %, PROCESSNG SYaTEs

Climate Change Al &:,

. Some sea states carry higher energy than others % Power Gain of RL controller over default Spring
* Some sea states have higher occurrence than others Damper for CETO 6 WEC
TPeriod
we normalize the generated power by the optimal Height (nino ) 6 8 10 12 14 16
power for every sea state 1 9.60| 22.80] 36.30| 45.50] 50.50] 54.7¢
2 3.80| 10.60( 15.20| 24.60( 23.90( 31.60
r(t) = power (t) — a* flyaw(t)) * yaw(t) 3 0.80| 4.20| 8.20| 13.60| 15.20| 18.40
power_opt(tp, ht) 4 -0.70| 1.90| 3.50| 6.94| 11.20] 15.10
* power generated from different wave types is % Power Distribution across different wave types
normalized by the max theoretical power for the wave (weighted by occurance)
types, and wave types are sampled based on occurrence Treriodd
* ais the weighting factor for the yaw penalty, gaw(t) is  |Height (m 6 3 10 12 14 16
the yaw at time t, and f (gauw(t) ) is a non-linear yaw 1 6871 875 6.0al 2.11] 0.41] 004
factor that penalizes higher yaw more than lower yaw 5 112 7.46 5l 10.49] 526/ 124
3 0.00| 1.18] 4.71| 6.40| 5.93| 3.42
4 0.04| 1.98| 5.07| 5.58| 5.53
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Intuition behind Reinforcement Learning controller performance @@ 7, PROCESSIG SVaTENS
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* Spring Damper is more greedy and reactive forces for the generators on the legs are almost proportional to the
instantaneous velocity of the tether as energy is captured working against this motion.

* RL controller is fuzzy about the proportionality of reactive force and tether (leg) velocity, as it compromises short-term
objectives for greater gains on energy capture at the more opportune segments of the wave cycles with discounted returns.
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Back Legs Velocity (m/s)

Front Leg Force (MN) Front Leg Force (MN) Back Legs Force (MN) Back Legs Force (MN)
Spring Damper Reinforcement Learning Spring Damper Reinforcement Learning
Front Leg Front Leg Back Leg Back Leg

* Better co-ordination between the multiple generators and legs with varying waves and 6 degrees of motion which the
existing state of the art controllers fail to do
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Impact of this work on Wave Energy Converters and beyond | @@ L, PROCESHNG SYSTENS
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* 22% power gains boosting revenue opportunities
* Reduced mechanical stress, which impacts maintenance and operating costs
* Actively mitigated survival conditions, helping to preserve capital investment

 This MARL architecture applies to other clean energy problems like wind
energy, both for individual wind power generators and wind farms

* STrXL can help faster training of Transformers for RL with better performance

* Carnegie CETO 6 platform won the Phase 3 contract of the EuropeWave project
to be deployed in BIMEP in Spain. This followed their win at the Phase 2
testing.
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