

Adaptive-Labeling for Enhancing Remote Sensing Cloud Understanding

¹Gala Jay, ²Nag Sauradip, ³Huang Huichou, ⁴Liu Ruirui, and ²Zhu Xiatian

¹NMIMS University, ²University of Surrey, ³Brunel University London, ⁴City University of Hong Kong

Presented at the TCCML Workshop at NeurIPS 2023

Problem Statement

Given a satellite image *I*, cloud detection predicts a pixel-level binary classification of whether each pixel is a cloud, outputting a binary mask *M*

Formally, a training dataset D_{train} contains image-mask pairs (*I*, *M*) used to train a cloud detection model, which is then evaluated on a testing split D_{test}

Image

Mask

Noise in Cloud Annotations

- Cloud annotation is a challenging task
- Previous methods assume the availability of reliable segmentation annotations without considering the noise in the dataset

CAL: Cloud Adaptive Labeling

- To tackle this noise, we propose Cloud Adaptive-Labeling (CAL).
- An efficient module that enhances existing cloud detection approaches.
- Plugged in as a post-processing block to **relabel** existing noisy cloud labels into a refined version.

CAL Algorithm

- CAL generates refined mask labels by using the binarization operation.
- We incorporate a trainable pixel intensity threshold to adaptively label the cloud masks
- New labels are used for fine-tuning the model.
- The threshold is dynamically adjusted based on the training loss

```
Algorithm 1: Cloud Adaptive Labeling
learnable_threshold = 60.0
                                                          // initial threshold
delta_x = 2.0
                                                                 // step size
best_loss = float('inf')
lower bound = 45.0
update_frequency = 150
while not done do
   new_labels = binarize_image(images, threshold=learnable_threshold)
   outputs = model(images)
   loss = criterion(outputs, new_labels)
   best_loss = min(best_loss, loss)
   if (idx + 1) % update_frequency == 0 then
      if loss > best_loss then
         learnable_threshold -= delta_x
                                                     // Decrease the threshold
         learnable_threshold = max(lower_bound, learnable_threshold)
      else
         learnable_threshold += delta_x
                                                     // Increase the threshold
```

Integration with existing models

- CAL can be integrated with existing models without design changes or learnable params
- CAL can be applied directly to any existing model without retraining.
- However, retraining with CAL has demonstrated enhanced results.

Advantages of CAL

- Enhances performance
- Eliminates the need for prior estimation of an appropriate threshold
- Model-agnostic. Plug-and-play
- Faster convergence
- Stabilizes performance metrics

Method	mIoU	Precision	Recall	F1-Score	OA
CD-CTFM [5]	84.13	91.09	89.22	90.15	95.45
CD-AttDLV3+ [17]	81.24	88.85	87.58	88.21	94.49
CloudAttU [25]	84.73	90.62	89.95	90.28	95.92
CloudFCN [18]	83.31	88.81	89.61	89.21	95.66
CD-Net [16]	89.70	94.30	94.70	94.50	95.40
LWCDnet [4]	89.90	95.10	94.30	94.70	95.30
FCN [24]	60.40	80.69	63.02	69.07	92.38
DeeplabV3 [23]	44.02	86.25	89.53	86.73	96.07
U-Net [22]	73.69	74.31	97.17	82.10	91.20
FCN + CAL	83.94	91.52	87.73	89.26	96.74
DeeplabV3 + CAL	83.95	85.95	94.17	89.38	96.77
U-Net + CAL	93.15	96.37	96.67	96.44	98.61

Table 1: Performance comparison on the 38-Cloud dataset.

Methods	mIoU	Precision	Recall	F1-Score	OA
FCN	60.40	80.69	63.02	69.07	92.38
FCN + CAL (ours)	83.94	91.52	87.73	89.26	96.74
U-Net	73.69	74.31	97.17	82.10	91.20
U-Net + CAL (ours)	93.15	96.37	96.67	96.44	98.61
DeeplabV3	44.02	86.25	89.53	86.72	96.07
DeeplabV3 + CAL (ours)	83.95	85.95	94.18	89.39	96.77

Table 2: Performance comparisons of models with and without CAL.

Thank you

Contact jay.gala78@nmims.edu.in for any queries.

Code available at