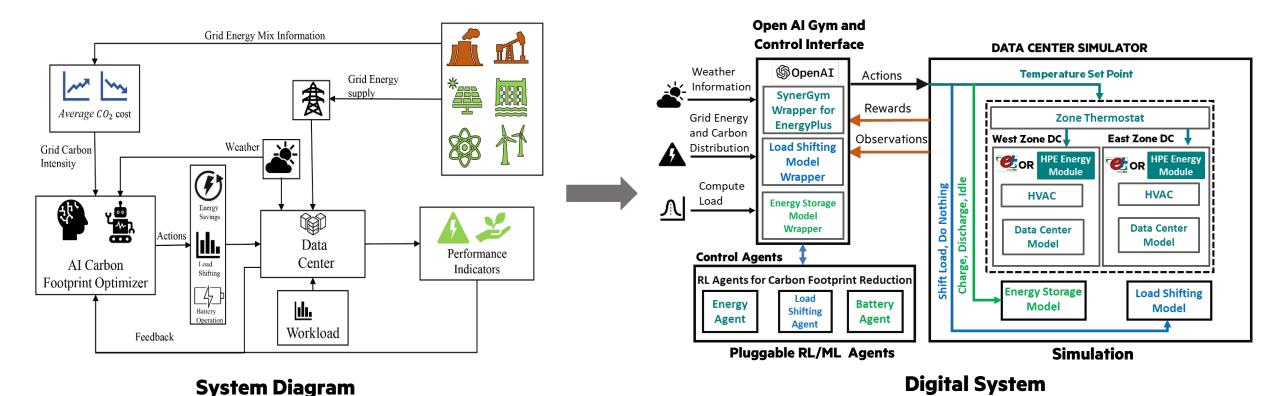


Real-time Carbon Footprint Minimization in Sustainable Data Centers with Reinforcement Learning

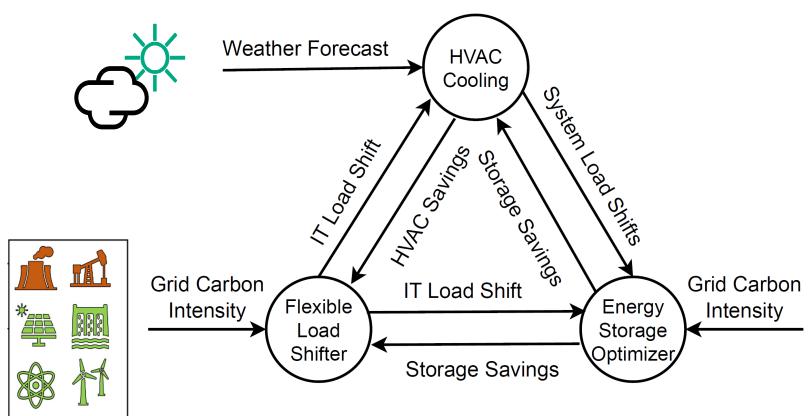
Soumyendu Sarkar, Avisek Naug, Ricardo Luna Gutierrez, Antonio Guillen, Vineet Gundecha, Ashwin Ramesh Babu, Cullen Bash

Hewlett Packard Labs @ Hewlett Packard Enterprise

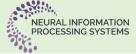
Data Center Green Dashboard - Simulated Digital Twin



Motivation

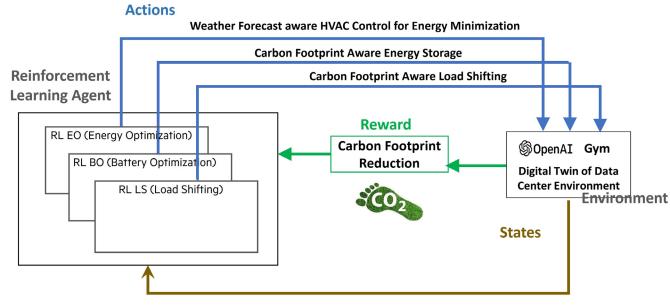

□ Sustainable data centers with
□ Lower Carbon Emissions
□ Lower Energy Consumption
□ Lower Energy Cost
□ Lower Energy Cost
□ Lower Energy Cost
□ Leverage battery storage
□ Real-time controller to optimize all these goals is lacking.
□ Real-time controller to optimize all these goals is lacking.

Complex Dependencies: Challenges for a real-time solution



Internal and External Dependencies for the Cooling, Load Shifting and Battery agents

Multi-agent Reinforcement Learning



Multi-Agent Reinforcement Learning (MARL)

- Achieve individual goals
- Collaborate through a shared reward

Explored various MARL methods:

- Multi-Agent Deep Deterministic Policy Gradient (MADDPG), (centralized critic)
- Independent Proximal Policy Algorithm (IPPO) (independent critics)

Grid Carbon Intensity, Battery Charge, DC Load, Temperatures, Weather Forecast

Concurrent Carbon Footprint Reduction Reinforcement Learning Control with Multi-agent Proximal Policy Optimization (PPO)

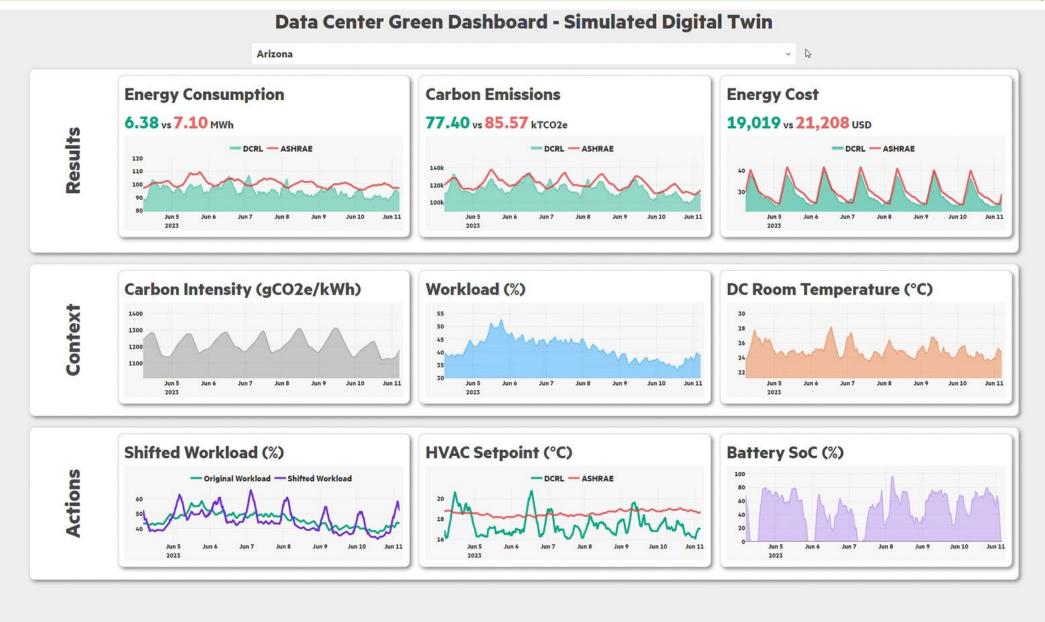
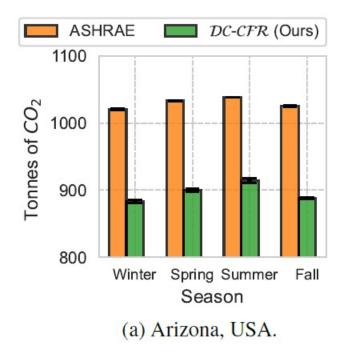
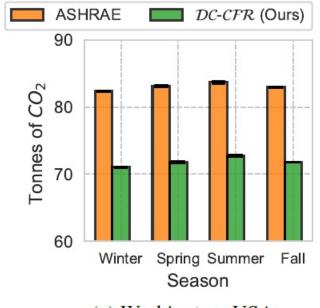

	MDP _{LS} Flexible Load Shifting	MDP _E Energy HVAC Optimizer	MDP _{BAT} Battery Agent
State: S_t	Time, DC temperature, IT Load, Unassigned Flexible Load, DC Energy, Carbon Intensity, Battery Charge	Time, DC temperature, Weather, DC Energy, IT Load, HVAC Setpoint	Time, DC Energy, Battery Charge, Carbon Intensity
Action: A_t	Assign Flexible Load, Idle	HVAC Setpoint	Charge, Supply, Idle
Reward: $R_{t+1}(S_t, A_t)$	$0.8 * r_{LS} + 0.1 * r_E + 0.1 * r_{BAT}$	$0.1*r_{LS}+0.8*r_{E}+0.1*r_{BAT}$	$0.1 * r_{LS} + 0.1 * r_E + 0.8 * r_{BAT}$

Table 1: MDPs for Load Shifting, HVAC Energy Optimization, and Battery Operation. Here $r_{LS} = -(CO_2 \ Footprint + LS_{Penalty})$, $r_E = -(Total \ Energy \ Consumption \times Cost \ per \ kWh)$, and $r_{BAT} = -(CO_2 \ Footprint)$, where $LS_{Penalty}$ is the scalar value of the unassigned flexible IT workload.

Sustainability Dashboard for Data Center




Results: CO2 emissions across locations and seasons

 $\mathcal{DC}\text{-}\mathcal{CFR}$ (Ours) **ASHRAE** 450 Tonnes of CO₂ 400 350 300 Spring Summer Fall Winter Season

(c) Washington, USA.

	Percentage Reduction of Carbon Footprint with IPPO compared to ASHRAE						
	Data Center Max Load 1.2MWh						
	Experiment with EnergyPlus for a period of 1 year; Lookahead $N = 4$ hours						
	Algorithms						
	LS	ЕО	BAT	LS+EO	LS+BAT	EO+BAT	(Our proposal)
Arizona	7.72 ± 0.18	8.16 ± 0.05	0.25 ± 0.08	13.26 ± 0.07	7.98 ± 0.1	8.46 ± 0.05	14.36 ± 0.09
New York	7.13 ± 0.19	8.02 ± 0.06	0.41 ± 0.03	14.39 ± 0.08	7.68 ± 0.20	8.21 ± 0.07	15.08 ± 0.11
Washington	4.27 ± 0.20	7.54 ± 0.11	0.46 ± 0.05	13.62 ± 0.08	4.53 ± 0.17	7.78 ± 0.08	13.96 ± 0.06

Table 2: **Carbon Footprint Reduction Percentages** compared to industry standard ASHRAE: Performance of the individual approaches over a period of one year.

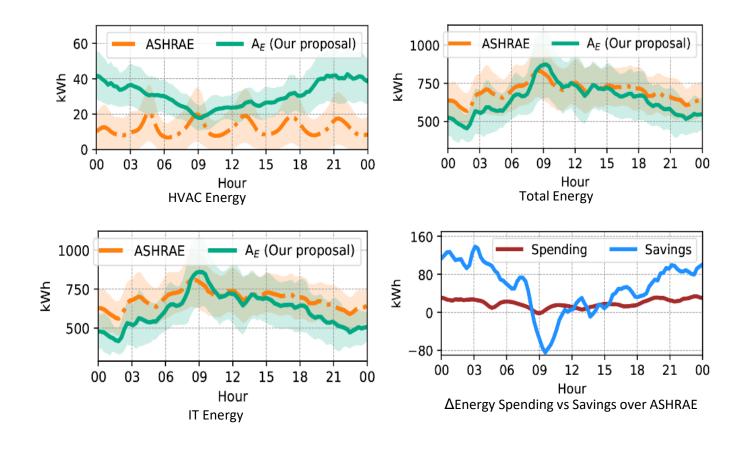
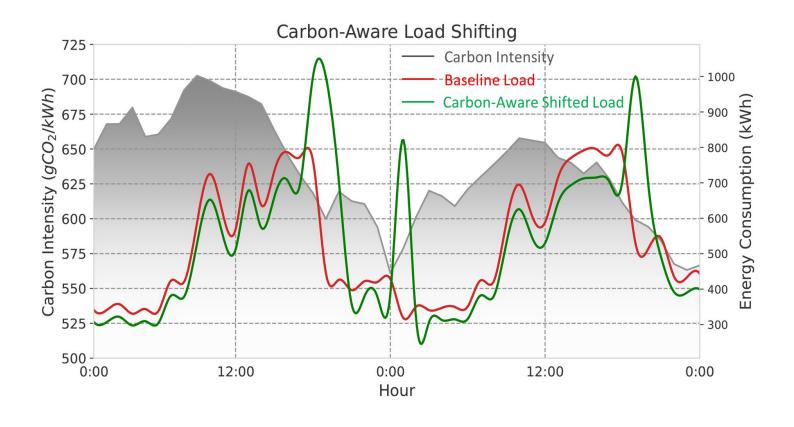
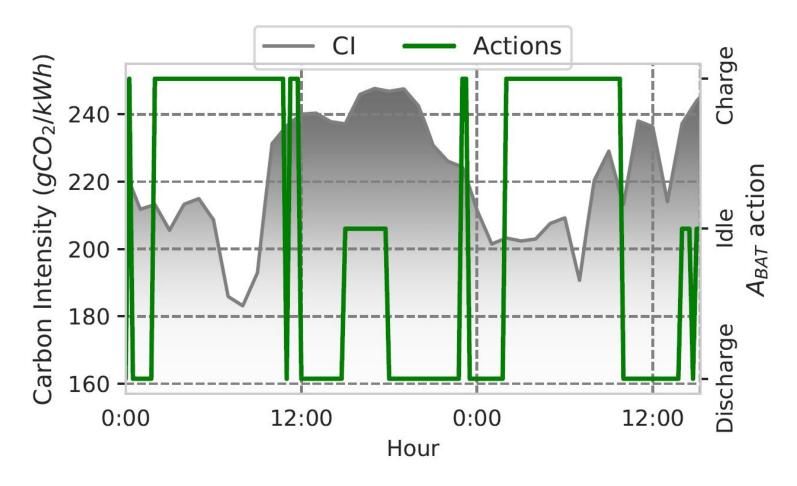

	Percentage Reduction of Energy Consumption with IPPO compared to ASHRAE						
	Data Center Max Load 1.2MWh						
	Experiment with EnergyPlus for a period of 1 year; Lookahead $N = 4$ hours						
	Algorithms						
	LS	ЕО	BAT	LS+EO	LS+BAT	EO+BAT	(Our proposal)
Arizona	7.11 ± 0.17	8.32 ± 0.04	0.00 ± 0.00	14.28 ± 0.07	7.15 ± 0.09	8.41 ± 0.05	14.54 ± 0.33
New York	7.05 ± 0.18	8.07 ± 0.06	0.00 ± 0.00	14.35 ± 0.08	7.12 ± 0.20	8.28 ± 0.08	14.62 ± 0.07
Washington	4.38 ± 0.21	7.42 ± 0.11	0.00 ± 0.00	13.78 ± 0.06	4.46 ± 0.18	7.31 ± 0.04	13.85 ± 0.07

Table 3: Energy Reduction Percentages compared to industry standard ASHRAE evaluated over one year.

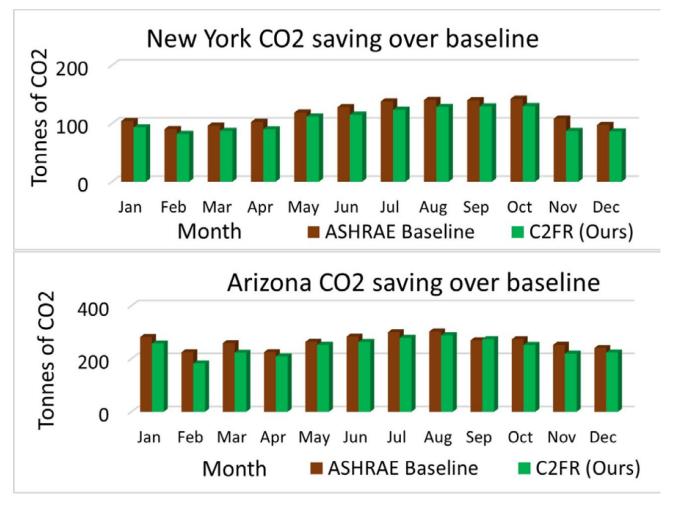
HVAC cooling optimization insights



HVAC Cooling Optimization over ASHRAE Controller



Carbon Intensity Aware Flexible Load Shifting



Sample time slice demonstrating the incremental carbon footprint savings using C2FR. We observe that the battery considers both the carbon intensity and the spikes in load to discharge and reduce carbon footprint.

Carbon Footprint reduction with the C2FR Framework

Monthly variations of Carbon footprint in the data centers in NY, and AZ states included in this study, controlled by ASHRAE baseline and C2FR (Ours)

Solution Highlights

Reduces data center carbon footprint and energy consumption

Reduces energy costs by shifting power load to lower-priced hours

Maximizes renewable energy usage through energy storage

Deep reinforcement learning (DRL) based

Implements carbonaware load scheduling Offers real-time control with all three optimizations, which has never been published

Optimizes HVAC control with weather forecasts

Modular, easily deployed, and integrated

Generalizable across multiple location/climate zones

Thank You

Soumyendu Sarkar Hewlett Packard Labs @ Hewlett Packard Enterprise