

A General Method for Testing Bayesian Models with Neural Data

Gabor Lengyel*¹, Sabyasachi Shivkumar*^{1,2} & Ralf Haefner¹

¹Center for Visual Science Department of Brain and Cognitive Sciences University of Rochester

²Zuckerman Institute Columbia University

*Equal contribution

Correspondence: lengyel.gaabor@gmail.com

A General Method for Testing **Bayesian Models with Neural Data**

Gabor Lengyel^{*1}, Sabyasachi Shivkumar^{*1,2} & Ralf Haefner¹

¹Center for Visual Science **Department of Brain and Cognitive Sciences University of Rochester**

²Zuckerman Institute **Columbia University**

Proceedings of the I edition of the Workshop on Unifying Representations in Neural Models (UniReps 2023), in proceedings of Machine Learning Research

> *Equal contribution Correspondence: <u>lengyel.gaabor@gmail.com</u>

Bayesian models

are successful in explaining behavior

- Perception (e.g., Knill & Richards 1996, Kersten et al. 2004)
- Cognition (e.g., Gold & Shadlen 2007, Lange et al. 2021)
- Perceptual learning (e.g., Michel & Jacobs 2007, Fiser & Lengyel 2019)
- Statistical learning (e.g., Orban et al. 2008, Fiser & Lengyel 2022)
- Concept learning (e.g., Huth et al. 2016, Lake et al. 2015, 2017)
- Motor learning (e.g., Kording & Wolpert 2004, Heald et al. 2021)

Bayesian models

are also successful in explaining some neural activity

- Dorsal medial superior temporal area (e.g., Fetsch et al. 2011)
- Inferior temporal cortex (e.g., Tajima et al. 2016)
- Primary auditory cortex (e.g., Kumar et al. 2007, 2011)
- Hippocampus (e.g., Ujfalussy et al. 2022)
- Lateral intraparietal cortex (e.g., Beck et al. 2008, Hou et al. 2019)
- Posterior parietal cortex (e.g., Funamizu et al. 2016)

• Primary visual cortex (e.g., Berkes et al. 2011, Banyai et al. 2018, Walker et al. 2020)

Two key ingredients

• Two key ingredients

1. Generative model

Two key ingredients

1. Generative model

2. Encoding model

• Two key ingredients

1. Generative model

2. Encoding model

40

45

100

200

time

- Probabilistic Population Codes (PPCs)
 (e.g., Ma et al. 2006, Beck et al. 2012)
- Distributed Distributional Codes (DDCs) (e.g., Vertes & Sahani 2018, 2019)
- Neural sampling

 (e.g., Orban et al. 2016, Ujfalussy et al. 2022)

400

300

Two key ingredients

1. Generative model

2. Encoding model

No consensus about the encoding

- Probabilistic Population Codes (PPCs) (e.g., Ma et al. 2006, Beck et al. 2012)
- Distributed lacksquare**Distributional Codes** (DDCs) (e.g., Vertes & Sahani 2018, 2019)
- Neural sampling (e.g., Orban et al. 2016,

Ujfalussy et al. 2022)

 $p(z_1, z_2, \dots, z_5 | x)$

Two key ingredients

1. Generative model

2. Encoding model

No consensus about the encoding

- Probabilistic Population Codes (PPCs) (e.g., Ma et al. 2006, Beck et al. 2012)
- Distributed \bullet **Distributional Codes** (DDCs) (e.g., Vertes & Sahani 2018, 2019)
- Neural sampling (e.g., Orban et al. 2016,

Ujfalussy et al. 2022)

 $p(z_1, z_2, \dots, z_5 \ x)$

Two key ingredients

1. Generative model

Assessing the predictions generated from all possible encodings'

2. Encoding model

No consensus about the encoding

- **Probabilistic Population** Codes (PPCs) (e.g., Ma et al. 2006, Beck et al. 2012)
- Distributed **Distributional Codes** (DDCs) (e.g., Vertes & Sahani 2018, 2019)

Neural sampling

(e.g., Orban et al. 2016, Ujfalussy et al. 2022)

 $p(z_1, z_2, \dots, z_5 | x)$

Two key ingredients

1. Generative model

 Z_5

 \mathcal{X}

Testing a generative model, M_1

Assessing the predictions generated from all possible encodings'

E.g., Ujfalussy & Orban, 2022

2. Encoding model

No consensus about the encoding

- **Probabilistic Population** Codes (PPCs) (e.g., Ma et al. 2006, Beck et al. 2012)
- Distributed **Distributional Codes** (DDCs) (e.g., Vertes & Sahani 2018, 2019)

Neural sampling

(e.g., Orban et al. 2016, Ujfalussy et al. 2022)

 $p(z_1, z_2, \dots, z_5 | x)$

Two key ingredients

 z_4

1. Generative model

$$p(z_1, z_2, \dots z_5 \ x)$$

$$(z_1) \ (z_2)$$

 Z_3

 Z_5

 ${\mathcal X}$

Testing multiple generative models, $M_1, \ldots M_m$ Assessing the predictions generated from all possible encodings "

2. Encoding model

No consensus about the encoding

- **Probabilistic Population** Codes (PPCs) (e.g., Ma et al. 2006, Beck et al. 2012)
- Distributed **Distributional Codes** (DDCs) (e.g., Vertes & Sahani 2018, 2019)

Neural sampling

(e.g., Orban et al. 2016, Ujfalussy et al. 2022)

 $p(z_1, z_2, \dots, z_5 \ x)$

- Two key ingredients
 - 1. Generative model

$$p(z_1, z_2, \dots, z_5 \ x)$$

 z_2

 Z_3

 Z_5

 ${\mathcal X}$

 z_1

Testing multiple generative models, $M_1, \ldots M_m$

Aim: to develop a method for testing different generative models that is invariant to the details of the encoding

2. Encoding model

No consensus about the encoding

- Probabilistic Population Codes (PPCs) (e.g., Ma et al. 2006, Beck et al. 2012)
- Distributed **Distributional Codes** (DDCs) (e.g., Vertes & Sahani 2018, 2019)
 - Neural sampling (e.g., Orban et al. 2016, Ujfalussy et al. 2022)

 $p(z_1, z_2, \dots, z_5 | x)$

- Two key ingredients
 - 1. Generative model

$$p(z_1, z_2, \dots, z_5 \ x)$$

 z_2

 Z_3

 Z_5

 ${\mathcal X}$

 z_1

Testing multiple generative models, $M_1, \ldots M_m$

Aim: to develop a method for testing different generative models that is invariant to the details of the encoding

It will be possible to conclude which generative model best explains data

2. Encoding model

No consensus about the encoding

- Probabilistic Population Codes (PPCs) (e.g., Ma et al. 2006, Beck et al. 2012)
- Distributed **Distributional Codes** (DDCs) (e.g., Vertes & Sahani 2018, 2019)

Neural sampling

(e.g., Orban et al. 2016, Ujfalussy et al. 2022)

 $p(z_1, z_2, \dots, z_5 | x)$

- Assumption
 - Our method is invariant to many encodings •
 - Linear Distributional Codes (LDCs) (Lange & Haefner 2022)

- Assumption
 - Our method is invariant to many encodings
 - Linear Distributional Codes (LDCs) (Lange & Haefner 2022)
 - Distributed Distributional Codes (DDCs) (e.g., Vertes & Sahani 2018, 2019)
 - Neural sampling (e.g., Hoyer & A. Hyvärinen 2002, Fiser et al. 2010)

- Assumption
 - Our method is invariant to many encodings
 - Linear Distributional Codes (LDCs) (Lange & Haefner 2022)
 - Distributed Distributional Codes (DDCs) (e.g., Vertes & Sahani 2018, 2019)
 - Neural sampling (e.g., Hoyer & A. Hyvärinen 2002, Fiser et al. 2010)
 - Is not invariant to
 - Probabilistic Population Codes (PPCs) (e.g., Ma et al. 2006, Beck et al. 2012)

- Assumption
 - Our method is invariant to many encodings •
- Method
 - Akin to Representational Similarity Analysis (RSA, Kriegeskorte et al. 2008)

- Assumption
 - Our method is invariant to many encodings
- Method
 - •

Akin to Representational Similarity Analysis (RSA, Kriegeskorte et al. 2008), we compare the relationships across posteriors to the relationships across the neural activities

- Assumption
 - Our method is invariant to many encodings
- Method
 - ullet

Akin to Representational Similarity Analysis (RSA, Kriegeskorte et al. 2008), we compare the relationships across posteriors to the relationships across the neural activities

- Assumption
 - Our method is invariant to many encodings
- Method
 - lacksquare

Akin to Representational Similarity Analysis (RSA, Kriegeskorte et al. 2008), we compare the relationships across posteriors to the relationships across the neural activities

- Generating neural predictions
 - For single neurons in area MT
 - a center-surround motion experiment (Shivkumar et al. 2023)

Generating neural predictions

For single neurons in area MT

a center-surround motion experiment (Shivkumar et al. 2023)

- Generating neural predictions
 - For single neurons in area MT
 - a center-surround motion experiment (Shivkumar et al. 2023)

- Generating neural predictions
 - For single neurons in area MT
 - a center-surround motion experiment (Shivkumar et al. 2023)

Generating neural predictions

For single neurons in area MT

a center-surround motion experiment (Shivkumar et al. 2023)

./sec.)

Sur

/sec.)

Sur

Generating neural predictions for center-surround interaction in motion

Testable predictions for the whole stimulus space

Conclusions

- encodings
 - It works for all Linear Distributional Codes (including neural sampling and **Distributed Distributional Codes**)
 - activity, fMRI signal, ANN node activity
- 2023) with data from are MT is in prep.

We developed a method for testing Bayesian models that is invariant to most

• It works for many types of neural data: single neuron responses, population

 Derivations, assessing validity, and application to simulated data can found in our paper Lengyel et al. (2023). Proceedings of the I edition of the Workshop on Unifying Representations in Neural Models, in proceedings of Machine Learning Research

• Applying the model to test causal inference in motion perception (Shivkumar et al.

