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Motivation: Specification Problem

• We want to deploy a model

for chest X-rays to all

regional hospitals

• Building the model is

outsourced to a private

company

• Regulators have privacy and

fairness concerns

• They want to specify

acceptable levels of

trustworthiness guarantees

for the model

Figure 1: CheXpert
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What are trustworthiness objectives for ML?

Values Objective Examples Mechanisms

Utility Accuracy
Architecture search, optimizer

search, etc.

Privacy
Di↵erential Privacy (DP Loss)

Unlearning

DP mechanisms: Noising,

Randomized Response, etc.

Fairness

Demographic Parity (DemParity)

Equality of Odds

Disparate Impact

DemParity processors

and regularizers

and many more (interpretability, robustness to distribution

shifts/adversarial examples, etc.)
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Privacy Objective: Di↵erential Privacy

Definition ((", �)-Di↵erential Privacy)

Let M : D⇤ ! R be a randomized algorithm that satisfies

(", �)-DP with " 2 R+ and � 2 [0, 1] if for all neighboring

datasets D ⇠ D 0
, and for all possible subsets R ✓ R of the result

space M satsifies

P [M(D) 2 R]  e" · P
⇥
M(D 0

) 2 R
⇤
+ �
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Fairness Objective: Demographic Parity

Definition (Demographic Disparity)

�DemParity(k , z) = P[Ŷ = k 0 | Z = z ]� P[Ŷ = k 0 | Z 6= z ]

where Ŷ = !(x, z) are model ! : X ⇥ Z 7! K predictions for

samples with sensitive attribute z .

Definition (�-disparity)

8z 2 Z, 8k 2 K,

�DemParity(k , z)  �
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ML trustworthiness as multi-objective optimization

min! `acc (!)

subject to `priv (!)  "

`fair (!)  �

(1)

where (`acc, `priv, `fair) 2 R3
�0 are the loss functions for each of the

utility, privacy and fairness criteria, respectively.

• Problem 1: Privacy is ensured at the level of mechanism

(here, the ML pipeline)

• Problem 2: Trustworthy parameters are treated as

hyper-parameters, not first-class objectives
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Pre-selection Bias
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Figure 2: Pre-selection of trustworthiness parameters only recovers

a portion of the Pareto frontier. The remaining parts of frontier

(shaded blue) are never explored.
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DP Learning to Fair DP Learning: Fairness Intervention

Dtrain

(x, z , y)

✓

Dtest

(x, z)

✓0

ŷ

Training

Process

Inference
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Fairness pre-processing increases the cost of private training

Theorem

Assume the training dataset

D = {(x, z , y) | x 2 X , z 2 Z, y 2 Y} is fed through the

demographic parity pre-processor Ppre following an ordering

defined over the input space X . Let Ppre enforce a maximum

violation �, and |Z | = 2. Suppose now M is an (", �) training

mechanism, then M � Ppre is (K�",K�eK�"�)-DP where

K� = 2 +

l
2�
1��

m
.
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Example: PATE

Sensitive

Data
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. . . . . .
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Public data

Private Model
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Algorithm 1 Confident-GNMax Aggregator

Input: query data point x , sensitive attribute z , predicted class label k, subpop-

ulation subclass counts m : Z ⇥K 7! Z�0

Require: minimum count M, threshold T , noise parameters �1, �2, fairness

violation margin �

1: if maxj{nj(x)}+N (0,�2
1) � T then

2: k  argmaxj

�
nj(x) +N (0,�2

2)
 

3: return k

4: if
P

k̃ m(z , k̃) < M then

5: m(z , k) m(z , k) + 1

6: return k

7: else

8: if

✓
m(z,k)+1

(
P

k̃ m(z,k̃))+1
�

P
z̃ 6=z m(z̃,k)

P
z̃ 6=z,k̃ m(z̃,k̃)

◆
< � then

9: m(z , k) m(z , k) + 1

10: return k

11: else

12: return ?

13: else

14: return ?
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Closing the fairness gap with Reject-Option for Fairness

• Optimizing for fairness during the training process does not

guarantee that fairness is obtained at inference time

• What if there were a hard constraint on fairness violations at

inference time?

• A reject-option allows to refuse to answer a query at

inference time for fairness purposes.

• Introduces a new utility dimension:

Coverage :=
# Queries Answered

# Queries
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Algorithm 5 Inference-time Demographic Parity Post-

Processor (IDP
3
)

Input: data point x , sensitive attribute z , predicted label ŷ ,

subpopulation-class counts m : Z ⇥ Y 7! Z�0

Require: minimum count M, fairness violation margin �

1: if
P

ỹ m(z , ỹ) < M then

2: m(z , y) m(z , ŷ) + 1

3: return ŷ

4: else

5: if

✓
m(z,ŷ)+1

(
P

ỹ m(z,ỹ))+1
�

P
z̃ 6=z m(z̃,ŷ)P

z̃ 6=z,ỹ m(z̃,ỹ)

◆
< � then

6: m(z , y) m(z , ŷ) + 1

7: return ŷ

8: else

9: return ?

16



Results
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FairPATE Pareto-dominates similar designs in most contexts
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Specification without direct data access is possible
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Conclusion: Specification requires objective-impartiality!

Pre-Selection
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Specification

19



Conclusion: Specification requires objective-impartiality!

Pre-Selection

Bias

Pareto

Ine�ciencies

Non-Impartial

Designs

Accurate

Specification

19



Conclusion: Specification requires objective-impartiality!

Pre-Selection

Bias

Pareto

Ine�ciencies

Impartial

Designs

Accurate

Specification

19



Conclusion: Specification requires objective-impartiality!

Pre-Selection

Bias

Pareto

E�cient

Impartial

Designs

Accurate

Specification

19



Conclusion: Specification requires objective-impartiality!
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Thank you!
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