Learning to Walk Impartially on the Pareto Frontier of Fairness, Privacy, and Utility

Mohammad Yaghini, Patty Liu, Franziska Boenisch, Nicolas Papernot

University of Toronto & Vector Institute

Motivation: Specification Problem

- We want to deploy a model for chest X-rays to all regional hospitals
- Building the model is outsourced to a private company
- Regulators have privacy and fairness concerns
- They want to specify acceptable levels of trustworthiness guarantees for the model

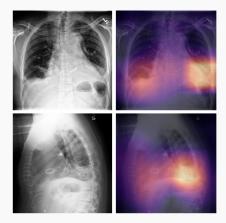


Figure 1: CheXpert

Motivation: Specification Problem

- We want to deploy a model for chest X-rays to all regional hospitals
- Building the model is outsourced to a private company
- Regulators have privacy and fairness concerns
- They want to specify acceptable levels of trustworthiness guarantees for the model

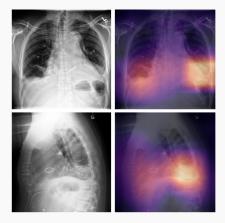


Figure 1: CheXpert

Values	Objective Examples	Mechanisms
Utility	Accuracy	Architecture search, optimizer search, etc.
Privacy	Differential Privacy (DP Loss) Unlearning	DP mechanisms: Noising, Randomized Response, etc.
Fairness	Demographic Parity (DemParity) Equality of Odds Disparate Impact	DemParity processors and regularizers

and many more (interpretability, robustness to distribution shifts/adversarial examples, etc.)

Values	Objective Examples	Mechanisms
Utility	Accuracy	Architecture search, optimizer search, etc.
Privacy	Differential Privacy (DP Loss) Unlearning	DP mechanisms: Noising, Randomized Response, etc.
Fairness	Demographic Parity (DemParity) Equality of Odds Disparate Impact	DemParity processors and regularizers

and many more (interpretability, robustness to distribution shifts/adversarial examples, etc.)

Definition ((ε, δ) **-Differential Privacy)**

Let $\mathcal{M}: \mathcal{D}^* \to \mathcal{R}$ be a randomized algorithm that satisfies (ε, δ)-DP with $\varepsilon \in \mathbb{R}_+$ and $\delta \in [0, 1]$ if for all neighboring datasets $D \sim D'$, and for all possible subsets $R \subseteq \mathcal{R}$ of the result space \mathcal{M} satsifies

 $\mathbb{P}\left[\mathcal{M}(D)\in R
ight]\leq e^{arepsilon}\cdot\mathbb{P}\left[\mathcal{M}(D')\in R
ight]+\delta$

Definition (Demographic Disparity)

$$\Gamma_{\mathsf{DemParity}}(k,z) = \mathbb{P}[\hat{Y} = k' \mid Z = z] - \mathbb{P}[\hat{Y} = k' \mid Z \neq z]$$

where $\hat{Y} = \omega(\mathbf{x}, z)$ are model $\omega : \mathcal{X} \times \mathcal{Z} \mapsto \mathcal{K}$ predictions for samples with sensitive attribute z.

Definition (γ **-disparity)**

 $\forall z \in \mathcal{Z}, \forall k \in \mathcal{K},$

 $\Gamma_{\mathsf{DemParity}}(k, z) \leq \gamma$

$$\begin{array}{ll} \min_{\omega} & \ell_{\mathsf{acc}}\left(\omega\right) \\ \text{subject to} & \ell_{\mathsf{priv}}\left(\omega\right) \leq \varepsilon \\ & \ell_{\mathsf{fair}}\left(\omega\right) \leq \gamma \end{array} \tag{1}$$

where $(\ell_{acc}, \ell_{priv}, \ell_{fair}) \in \mathbb{R}^3_{\geq 0}$ are the loss functions for each of the utility, privacy and fairness criteria, respectively.

$$\begin{array}{ll} \min_{\omega} & \ell_{\mathsf{acc}}\left(\omega\right) \\ \text{subject to} & \ell_{\mathsf{priv}}\left(\omega\right) \leq \varepsilon \\ & \ell_{\mathsf{fair}}\left(\omega\right) \leq \gamma \end{array} \tag{1}$$

where $(\ell_{acc}, \ell_{priv}, \ell_{fair}) \in \mathbb{R}^3_{\geq 0}$ are the loss functions for each of the utility, privacy and fairness criteria, respectively.

• Problem 1: Privacy is ensured at the level of mechanism (here, the ML pipeline)

$$\begin{array}{ll} \min_{\omega} & \ell_{\rm acc}\left(\omega\right) \\ \text{subject to} & \frac{\ell_{\rm priv}\left(\omega\right) \leq \varepsilon}{\ell_{\rm fair}\left(\omega\right) \leq \gamma} \end{array} \tag{1}$$

where $(\ell_{acc}, \ell_{priv}, \ell_{fair}) \in \mathbb{R}^3_{\geq 0}$ are the loss functions for each of the utility, privacy and fairness criteria, respectively.

 Problem 1: Privacy is ensured at the level of mechanism (here, the ML pipeline) ⇒ We do not have a sample-based privacy loss

Treated as hyper-parameters

$$\begin{array}{c|c} \min_{\omega} & \ell_{acc}\left(\omega\right) \\ \text{subject to} & \ell_{priv}\left(\omega\right) \leq \varepsilon \\ & \ell_{fair}\left(\omega\right) \leq \gamma \end{array}$$
 (1)

where $(\ell_{acc}, \ell_{priv}, \ell_{fair}) \in \mathbb{R}^3_{\geq 0}$ are the loss functions for each of the utility, privacy and fairness criteria, respectively.

- Problem 1: Privacy is ensured at the level of mechanism (here, the ML pipeline) ⇒ We do not have a sample-based privacy loss
- Problem 2: Trustworthy parameters are treated as hyper-parameters, not first-class objectives

Treated as hyper-parameters

$$\begin{array}{c|c} \min_{\omega} & \ell_{\mathsf{acc}}\left(\omega\right) \\ \text{subject to} & \ell_{\mathsf{priv}}\left(\omega\right) \leq \varepsilon \\ & \ell_{\mathsf{fair}}\left(\omega\right) \leq \gamma \end{array} (1)$$

where $(\ell_{acc}, \ell_{priv}, \ell_{fair}) \in \mathbb{R}^3_{\geq 0}$ are the loss functions for each of the utility, privacy and fairness criteria, respectively.

- Problem 1: Privacy is ensured at the level of mechanism (here, the ML pipeline) ⇒ We do not have a sample-based privacy loss
- Problem 2: Trustworthy parameters are treated as hyper-parameters, not first-class objectives ⇒ Pre-Selection Bias

Pre-selection Bias

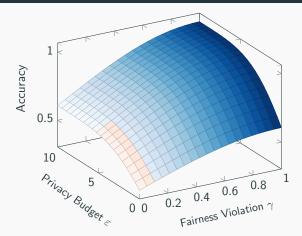
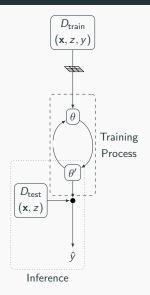
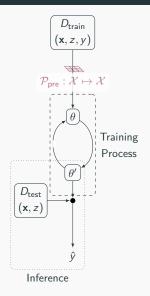
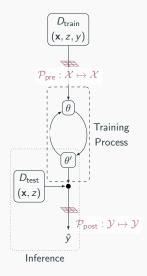
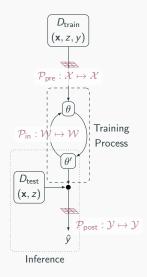


Figure 2: Pre-selection of trustworthiness parameters only recovers a portion of the Pareto frontier. The remaining parts of frontier (shaded blue) are never explored.



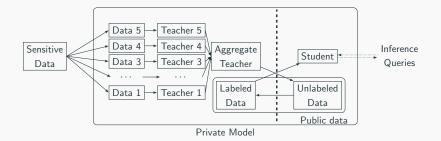


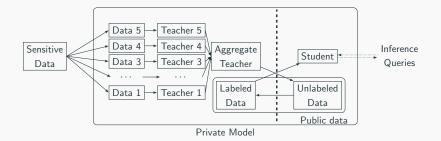


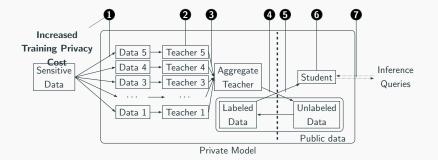


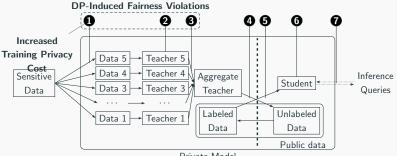
Theorem

Assume the training dataset $D = \{(\mathbf{x}, z, y) \mid \mathbf{x} \in \mathcal{X}, z \in \mathcal{Z}, y \in \mathcal{Y}\} \text{ is fed through the}$ demographic parity pre-processor \mathcal{P}_{pre} following an ordering defined over the input space \mathcal{X} . Let \mathcal{P}_{pre} enforce a maximum violation γ , and |Z| = 2. Suppose now \mathcal{M} is an (ε, δ) training mechanism, then $\mathcal{M} \circ \mathcal{P}_{pre}$ is $(K_{\gamma}\varepsilon, K_{\gamma}e^{K_{\gamma}\varepsilon}\delta)$ -DP where $K_{\gamma} = 2 + \left\lceil \frac{2\gamma}{1-\gamma} \right\rceil$.

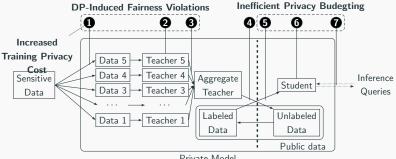








Private Model



Private Model

$\label{eq:algorithm1} \textbf{Algorithm1} \ \textbf{Confident-GNMax} \ \textbf{Aggregator}$

- **Input:** query data point x, sensitive attribute z, predicted class label k, subpopulation subclass counts $m : \mathcal{Z} \times \mathcal{K} \mapsto \mathbb{Z}_{>0}$
- **Require:** minimum count *M*, threshold *T*, noise parameters σ_1 , σ_2 , fairness violation margin γ
 - 1: if $\max_j \{n_j(x)\} + \mathcal{N}(0, \sigma_1^2) \ge T$ then
 - 2: $k \leftarrow \arg \max_j \left\{ n_j(x) + \mathcal{N}(0, \sigma_2^2) \right\}$
 - 3: **return** *k*

13: else

14: return \perp

Algorithm 2 Confident&Fair-GNMax Aggregator

- **Input:** query data point x, sensitive attribute z, predicted class label k, subpopulation subclass counts $m : \mathcal{Z} \times \mathcal{K} \mapsto \mathbb{Z}_{>0}$
- **Require:** minimum count *M*, threshold *T*, noise parameters σ_1 , σ_2 , fairness violation margin γ
- 1: if $\max_j \{n_j(x)\} + \mathcal{N}(0, \sigma_1^2) \ge T$ then
- 2: $k \leftarrow \arg \max_j \left\{ n_j(x) + \mathcal{N}(0, \sigma_2^2) \right\}$
- 3: if $\sum_{\tilde{k}} m(z, \tilde{k}) < M$ then

4:
$$m(z,k) \leftarrow m(z,k) + 1$$

5: **return** *k*

12: else

13: return \perp

Algorithm 2 Confident&Fair-GNMax Aggregator

- **Input:** query data point x, sensitive attribute z, predicted class label k, subpopulation subclass counts $m : \mathcal{Z} \times \mathcal{K} \mapsto \mathbb{Z}_{>0}$
- **Require:** minimum count *M*, threshold *T*, noise parameters σ_1 , σ_2 , fairness violation margin γ

1: if
$$\max_{i}\{n_{j}(x)\} + \mathcal{N}(0, \sigma_{1}^{2}) \geq T$$
 then
2: $k \leftarrow \arg \max_{i}\{n_{j}(x) + \mathcal{N}(0, \sigma_{2}^{2})\}$
3: if $\sum_{\tilde{k}} m(z, \tilde{k}) < M$ then
4: $m(z, k) \leftarrow m(z, k) + 1$
5: return k
6: else
7: if $\left(\frac{m(z,k)+1}{(\sum_{\tilde{k}} m(z,\tilde{k}))+1} - \frac{\sum_{\tilde{z} \neq z} m(\tilde{z},\tilde{k})}{\sum_{\tilde{z} \neq z, \tilde{k}} m(\tilde{z},\tilde{k})}\right) < \gamma$ then
8: $m(z, k) \leftarrow m(z, k) + 1$
9: return k
10: else
11: return \perp
12: else
13: return \perp

- Optimizing for fairness during the training process does not guarantee that fairness is obtained at inference time
- What if there were a **hard constraint** on fairness violations at inference time?
- A **reject-option** allows to refuse to answer a query at inference time for fairness purposes.
- Introduces a new utility dimension:
 Coverage := # Queries Answered # Queries

Algorithm 5 Inference-time Demographic Parity Post-Processor (IDP³)

Input: data point x, sensitive attribute z, predicted label \hat{y} , subpopulation-class counts $m : \mathcal{Z} \times \mathcal{Y} \mapsto \mathbb{Z}_{\geq 0}$

Require: minimum count *M*, fairness violation margin γ

1: if
$$\sum_{\tilde{y}} m(z, \tilde{y}) < M$$
 then

2:
$$m(z,y) \leftarrow m(z,\hat{y}) + 1$$

3: return \hat{y}

4: **else**

5: **if**
$$\left(\frac{m(z,\hat{y})+1}{\left(\sum_{\hat{y}}m(z,\hat{y})\right)+1} - \frac{\sum_{\tilde{z}\neq z}m(\tilde{z},\hat{y})}{\sum_{\tilde{z}\neq z,\tilde{y}}m(\tilde{z},\tilde{y})}\right) < \gamma$$
 ther

6:
$$m(z,y) \leftarrow m(z,\hat{y}) + \hat{z}$$

7: return \hat{y}

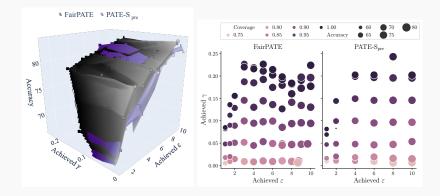
8: **else**

9: return \perp

Results

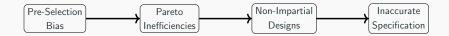
FairPATE Pareto-dominates similar designs in most contexts

0 0.+01 ## **0**



Specification without direct data access is possible





Thank you!