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Abstract

Local gradient methods, e.g., Local SGD, improve the
communication efficiency of data parallel training by letting
workers communicate only every H steps.

* How to set the synchronization period H?
- Optimization: communication & convergence tradeoff
- Generalization: proper H = higher test acc.(Lin et al., 2020)
* We propose a theory-grounded strategy to set H
Quadratic Synchronization Rule (QSR)
H ~ n~? (n: learning rate)
Improve comm. efficiency & test acc. simultaneously!

time val. acc.
data parallel 26.7h l 79.86% I
QSR 20.2h 80.98%

save 7h, improve 1%

Setting: 300 epoch on ViT-B, ImageNet
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(a) Constant LR after switching (b) Cosine LR decay (Ortiz et al., 2021)

ImageNet, ResNet-50

Issue: short-term generalization benefits on cos decay
(Ortiz et al., 2021)

Theory: Why does Local SGD Generalize Better?

Background: Local Gradient Methods

e Data parallel approach
- Distribute gradient computation on B samples to K workers
- Each iteration, each worker:

1. compute gradients on B/K samples

2. average gradients via All-Reduce

3. update using the averaged gradient & optimizer OPT

Issue: frequent sync. = high comm. cost

* Local gradient methods
- Each worker locally updates its own replica with OPT

- Average model parameters every H steps
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Generalization Benefits of Local SGD

« Local steps improve generalization (Lin et al., 2020)

- Run (= Local SGD with H = 1)

- Run #2: Same as #1 but switch to Local SGD with H > 1 at
some epoch t,, named “Post-local SGD”

- Result: test acc. #2 > #1

e Setting (Follow Blanc et al., 2020; Damian et al., 2021; Li et al., 2022)
- Assume a minimizer manifold I

- Assume a smaller LR n

- Analyze dynamics of (Local) SGD near I’

- Fast and slow dynamics in SGD
(Blanc et al., 2020; Damian et al., 2021; Li et al., 2022)

Slow Dynamics (long term)
“Center” of the diffusion shifts

(0(n™*) steps)

Fast Dynamics (short term)
Diffuse locally near a minimizer

(0(n™") steps)

0. a tiny shift o< cov[noise]
(from 3rd Taylor expansion)

e Local SGD drifts faster to flatter minima

SGD, batch size B SGD, batch size B/K

5

H steps

Local SGD, By, = B/K

G = -

H local steps + average

H steps

drift fast in expectation, but drift fast in expectation,
go back and forth (large var.) averaging reduces var.

drift slowly

« SDE approximations for different scalings of H
s N
Theorem (informal). For O(n~4) steps, Local SGD with different scalings of

H can be approximated by the following SDEs on I
1.H = [ /n (Guetal., 2023)

A¢(t) = Pe( =3(O)dW, — 35 VPL(Q)[Eo(¢))dt ~ KSVAL(O) [ (¢)]dt )
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Same as SGD (Li et al., 2022) Unique drift term of Local SGD

- P ({) increases with H, goes to 0 as Hn — 0 and goes to X,({) as Hn — oo

2. H = (a/n)? (our new result)
A1) = Pe( 53/ (Qaw (1) - J5V°L(Q)[Bo(C)t)
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K times of SGD; Local SGD with H = §/n when f — o0 )

H ~ n~! to see the benefit, H ~ n~¢ to maximize it!

Cannot find valid SDE approximation on the manifold for more aggressive scalings.




