
LeanFlex-GKP: Advancing Hassle-Free Structured Pruning with Simple Flexible Group Count
Jiamu Zhang1, Shaochen (Henry) Zhong*2, Andrew Ye*1, Zirui Liu2, Kaixiong Zhou3, Xia Hu2, Shuai Xu1, Vipin Chaudhary1

1Case Western Reserve University 2Rice University 3Massachusetts Institute of Technology

What we have done?

GKP-variants with dynamic operations

‣ Under the general realm of CNN network pruning, two
categories of techniques have been proposed: unstructured
pruning and structured pruning.

‣ Unstructured pruning:

‣ Enjoy a higher degree of pruning freedom and thus better

performance.

‣ Result in a sparse network structure.

‣ Require special libraries or hardware support to realize

compression or acceleration benefits.

‣ Structured pruning:

‣ Removes model components in groups that follow the
architecture design.

‣ Reduced in dimension yet entirely dense.

‣ Provide immediate compression benefits without additional

demand

Background

‣ TMI-GKP opts to include dynamic choices of clustering schemes in
each of its convolutional layers.

‣ Some clustering schemes involving dimensionality reduction can be
very expensive to run (e.g., k-PCA).

‣ Requires training snapshots or checkpoints of the unpruned model,
which is not user friendly in practical applications.

‣ We propose a new method to include the dynamic operation within
Conv2d(groups) (a.k.a. “group count”), and argue that allowing each
convolutional layer to take a flexible number of groups when grouping
filters is the best area to integrate dynamic operations into a GKP
procedure.

‣ Our proposed method, LeanFlex-GKP, consists of a four-stage procedure:

‣ Filter grouping:

• group filters within a certain layer into n equal-sized filter groups
according to their distance towards k-Means++ determined centers.

‣ Group kernel pruning
• prune a certain amount of grouped kernels out of all filter groups

within the same layer, determined by each grouped kernel’s L2 norm
and distance to their geometric median.

‣ Post-prune group count evaluation
• evaluate all grouping and pruning strategies obtained under different

group count settings and select the one where the preserved group
kernels have the maximum inter-group distance and the minimum
intra-group distance.

‣ Grouped convolution reconstruction
• convert the pruned model to a grouped convolution format.

‣ Advance the progress of GKP by identifying and solving a common pain
points — dynamic operation.

‣ Provide an efficient, hassle-free experience by proposing a method that
is post-train, one-shot, data-agnostic, and with just one tunable hyper-
parameter.

‣ One can also measure the compute/memory requirement of a pruned

model before the actual pruning, as well as be able to prune with
different aggressiveness — two user-friendly characteristics
(surprisingly) lacking in many modern pruning methods.

‣ Massive speed advantage on pruning procedure over existing performant
GKP variants.

‣ Achieve SOTA-competitive and even beyond SOTA performance on wide
range of CNN model architecture and dataset.

‣ Guiding future developments of GKP with our design insights and
ablation studies.

Contributions

How we did it?
#1: KPP-Induced Filter Grouping

#3: Post-Prune Group Count Evaluation

‣ We first cluster filters (the circles) via KPP into n groups with no constraint on
having an equal group size to determine clustering centers (the squares), as in
(a).

‣ Then, our operation can be viewed as a cycle between assigning m nearest
filters into a KPP center to form a filter group, then finding the next KPP center
to do subsequent filter assignments, as in (b) → (c); until n filter groups are
formed (the first KPP center is picked at random).

‣ Last, we conduct a multiple restart and repeat (b) and (c) center-finding-filter-
assignments, as showcased in (d).

‣ After all multiple restarts, we are left with n candidate filter grouping strategies,
and select the strategy that has filters with the least intra-group distance to their
respective KPP centers (having less summed length on red arrows).

‣ Previous methods like TMI-GKP converted its grouped kernel selection problem
as a graph search problem, added with the help of a greedy procedure and
multiple restarts.

‣ While such a procedure is generally efficient, it is still time and resource-
consuming given a wide layer.

‣ We utilize a simple combination of L2 norm and Geometric Median based
distance to form a lightning-fast pruning procedure:

‣ Given an unpruned filter group as in (a), we first calculate the Geometric

Median (GM) of its Grouped Kernels (GKs), as well as each GK’s distance to
the GM and their L2 norm.

‣ These distances and the L2 norm are visualized in (b) as the length of black
arrows and the area of green circles, respectively.

‣ The GKs with large L2 norms and small distances to their GMs are
preserved and eventually reconstructed to the grouped convolution format,
as shown (c) to (d).

Main Experiments (abbreviated)

TL;DR: Pruning grouped kernels while remaining structured is great, but all performant grouped kernel pruning methods rely on dynamic operations with severe costs.
We argue it is best to include such dynamic operations at Conv2d(groups), resulting in a method with improved performance, efficiency, and user-friendliness.

#2: GM + L2 Grouped Kernel Pruning

Filter PruningUnpruned Channel Pruning Kernel Pruning

O
ut

pu
t C

ha
nn

el
s 1

2

3

4

1 2 3 4

Input Channels

1 2 3 4 1 2 3 4 1 2 3 4

Intra-Kernel Pruning

1 2 3 4

‣ To achieve better pruning freedom while remain densely
structured, a special type of intra-channel pruning granularity
called Grouped Kernel Pruning (GKP) has been proposed in
ICLR 2022.

Unpruned

1

2

3

4

1 2 3 4

Input Channels

Filter Grouping

1

4

2

3

1 2 3 4

O
ut

pu
t C

ha
nn

el
s

Grouped Kernel Pruning

1

4

2

3

1 2 3 4

2 4

1

4

2

3

Grouped Filter

Grouped Kernel

Filter

Reconstruct as
Grouped Convolution

Kernel

F1 F3 F2 F4

F1 F3F2 F4

F1F3F2 F4

F1

F3

F2

F4

1

3

4

2

1 2 3 4 1 4

2 4

1

3

2

4

(a) Generate Dynamic Equal-Size Filter Grouping
Candidates and Select the TMI Preferred One

(b) Prune Equal Amount of
Grouped Kernels within Each Group

(c) Reconstruct as
Grouped Convolution

Grouped Filter

F1

F2

F3

F4

1 2 3 4

F1

F2

F3
F1

F2

F3

F4

1

3

4

2

1 2 3 4

Grouped Kernels

1

3

4

2

1 3

1 2 3

Gumbel-Softmax

F4

(a) Learning-based Filter Grouping
with Dynamic Group Sizes

(b) Magnitude-based Grouped Kernel
Pruning with Dynamic Pruning Ratios

(c) Reconstruct with
Custom Model Definition

‣ DSP makes its filter grouping and group kernel pruning stages dynamic in
the sense that they may enjoy different group sizes and different in-group
pruning rates within the same layer.

‣ But resultant pruned network is irregularly shaped and therefore relies on
custom model definitions and convolutional operators for fine-tuning and
inference.

1

3

2

2

1

3

(a) Filters Clustered
via k-Means++

(c) Determine Next k-Means++ Center with the
Greatest Distance to all Assigned Centers.

Assign like in (b), then Repeat

(d) Multiple Restart with a
Different Initial k-Mean++ Center

(b) Pick a Random k-Mean++
Center, then Assign it with Nearest Filters

(a) Given One Unpruned
Filter Group

（b) Calculate L2 Norm and
Distance to GM for all GKs

GK2
GK1

GK3
GK4

(c) Prune GKs that
deemed Redundant

GK2
GK1

(Pruned)

GK3

GK4
(Pruned)

(d) Form Pruned
Filter Group

Grouped Kernel

GK1 GK2 GK3 GK4 GK2 GK3

Filter

Group 1 Group 2

Inner Distance

Outer Distance

Geometric
Median

Kept Grouped
Kernel

‣ We first compute the GM among retained grouped kernels and then
calculate the inner and outer distance among them.

‣ After a normalization w.r.t. the group count, the one with the highest
average (Outer Distance - Inner Distance) is chosen.

‣ Given each group count evaluation is conducted upon a pruned conv
layer (after being grouped with different Conv2d(groups)), our method
makes connections between the (originally independent) filter grouping
and grouped kernel pruning stage.

